
 Advanced search

Linux Journal Issue #131/March 2005

Features

Legacy Database Replacement with LAMP by Richard Hulse
Chalk up another victory for Do-It-Yourself IT, as one in-house
project replaced three incompatible proprietary applications.

Managing Projects with WebCollab by Mike Cohen
Keep your project status info and the key files in one place with
this easy-to-use tool.

A Database-Driven Web Application in 18 Lines of Code by Paul Barry
Want to see all the code for a soccer team tracking application?
Want to see it again?

Indepth

Introducing Ardour by Dave Phillips
A Linux Journal first, this article features a new song recorded
just for this issue. Get started with hard-disk recording and have
a listen.

Centralized Authorization Using a Directory Service, Part II by Alf
Wachsmann

Single sign-on is one step closer as we replace /etc/passwd
entries with a centralized directory of users and groups.

Event-Driven Programming with Twisted and Python by Ken Kinder
Develop scalable software quickly with this project that gets a
handle on a high-performance programming technique.

GNU Motion: Your Eye in the Sky for Computer Room Surveillance by
Phil Hollenback

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/131/7774.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7885.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7937.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7796.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7334.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7871.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7713.html

Make your security Webcam show you all the crimes, none of
the empty rooms.

The Perl Debugger by Daniel Allen
print("hello? Is this thing on?\n ");—or is there a
better way?

The Oddmuse Wiki Engine by Brian Tanaka
Get your company or project information organized with a
system that lets everyone contribute fixes.

LaTeX Equations and Graphics in PHP by Titus Barik
Put the math you want on your Web site, right inside the pages
you're already building.

Embedded

Optimization in GCC by M. Tim Jones
Want to shrink your program's memory requirements, run time
or both?

Toolbox

At the Forge Bloglines Web Services, Continued by Reuven M.
Lerner
Kernel Korner Analysis of the HTB Queuing Discipline by Yaron
Benita
Paranoid Penguin Book Review: Islands in the Clickstream by Mick
Bauer

Columns

Linux for Suits Migration Stories by Doc Searls
EOF Data Center Linux at OSDL by Ibrahim Haddad

Departments

From the Editor
Letters
upFRONT
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7581.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7583.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7870.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7269.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7886.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7935.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7935.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7935.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7950.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7799.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7954.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7956.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7951.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/7952.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Legacy Database Replacement with LAMP

Richard Hulse

Issue #131, March 2005

Some legacy database applications are prime candidates for replacement with
LAMP-based Web applications. Richard Hulse explains how Radio New Zealand
completed such a project.

Radio New Zealand is a public radio broadcaster, and as with other
broadcasters, we have a huge library of music and programmes about music. In
1987, a new computerized library cataloging system, called BRS, was
commissioned to assist broadcasters in the storage of library data.

Specifically, BRS was used to store data about LPs (and later CDs), tapes, live
concert recordings, interviews and the collection of classical music scores. The
system was accessed by way of dumb terminals and, later, terminal emulators
on PCs. It also was used by radio staff to schedule and track the music
broadcast on Concert FM—the company's classical music network.

BRS was a proprietary cataloging application sold by Maxwell Online, Inc. It ran
on UNIX and had a long life. It had a couple of hardware upgrades during its 16-
year life; on the software side, a few extra database tables were added for
other types of data. BRS survived Y2K without a glitch, in spite of claims to the
contrary, and in 2003 talks began in earnest to replace it.

 DIY-IT

In the past, a replacement project of this nature probably would have been
outsourced. Experience has shown, however, that in some cases we'd end up
with a closed-source custom application and be locked in to one company for
ongoing upgrades and modifications. Sometimes when these companies cease
trading and people move on, the application we depend on becomes an
orphan, and the data is difficult or impossible to move to a new application.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

DIY projects are not always appropriate, and we carefully weighed all the
issues. Because of the critical nature of both the data and the application, plus
the availability of in-house skills, we felt it was appropriate in this case to
undertake the project ourselves.

 Hello BRAD

Bruce Intemann from our IT department was the project leader and put
together a quick proof of concept on a desktop PC running Red Hat Linux 8, an
Apache Web server, MySQL and PHP (LAMP). Bruce was able to work out how
to extract the data from BRS in plain-text format, and he constructed a simple
search interface based on the Full-text Index of MySQL, with a small sample of
the data converted by hand. Access was granted by way of a standard Web
browser.

Around this time, I was completing a PHP Web project for another part of the
company and offered my skills to this new project. When it came to name the
system, I thought it would be nice to retain the B and R since the they are the
first initials of the system's “parents”. My wife came up with the name BRAD,
and one of our staff decided the acronym stood for Bruce and Richard's Audio
Database. The name stuck.

After the proof of concept was accepted, I wrote a short Perl script to parse all
the data—about 200,000 records—and insert it into the MySQL database. This
was complicated because several of the smaller databases had been merged
into the main database, Works, to aid global searching. Fortunately, one field
was used to indicate the location (source) of the original data. See Listing 1 for a
sample of BRS data.

Listing 1. One Record from the BRS in Original Text Format

*** BRS DOCUMENT BOUNDARY ***
..Document-Number:
 000080019
..TI:
 Ode for the centenary of Trinity College Dublin,
 Great parent, hail to thee (Z327)
..MA:
 Hyperion
..CA:
 CDA 66476
..ME:
 cd
..RA:
 The King's Consort
..CF:
 vocal - ode
..CP:
 PURCELL
..CD:
 Robert King
..SO:
 Gillian Fisher, Evelyn Tubb (sopranos), James Bowman, Nigel
 Short (counter-tenors), Rogers Covey-Crump (high tenor), John Mark
 Ainsley (tenor), Michael George, Charles Pott (basses)

..ST:
 T12-21
..AT:
 Purcell - Complete odes and welcome songs vol 5
..DU:
 002419
..PT:
..RD:
 2-4 Jan 1991
..RE:
..AD:
..SR:
..RO:
..CY:
 1694
..LI:
 Nahum Tate
..OR:
..LN:
..PU:
..RI:
..ED:
..LP:
..LQ:
 cp
..LQ:
..NO:
..IS:
..LD:
 921012
..LU:
 leander
*** BRS DOCUMENT BOUNDARY ***

Once a complete snapshot of the data was transferred, I rewrote Bruce's code
using object-oriented PHP. I also utilised a search class I wrote for another
project, modifying it to display music data instead of news stories.

The rough-and-ready demo was deployed on a development server, and staff
members were asked for comments. Based on their responses, we decided the
best way to proceed was to improve the system continually based on staff
feedback, alongside the operation of the existing system. Dual operation during
development ensured that staff still had access to a working system and also
allowed comparisons between the search results obtained from both systems.
It also allowed staff to gain confidence in using the new system and the results
it presented.

To separate out the data into its original sets, a more complex script was
written to parse the data files, un-merging all the original data sources from
BRS. These sets were inserted into the separate databases and tables shown in
Figure 1. Each division of the company is considered a zone in BRAD, and each
data source is known as a section. Any zone can contain aliases to sections in
other zones or options to search across any list of tables, regardless of where
they are in the system.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7774f1.large.jpg

Figure 1. The arrangement of BRAD's data sources. The table marked * represents an alias to
another table outside the current zone.

The BRS database was flat (nonrelational), and data had been entered by
different people in different formats over many years. As I viewed the results of
each snapshot going into the new system, I adjusted the Perl script to clean up
some of the data anomalies—particularly in date fields. For example, the
original text date field for the last update to a record was edited manually in
the past—in BRAD this is a datetime field maintained by the system. Fields also
were added to track the creation date.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7774f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7774f1.large.jpg

 BRAD Meets Open Source

BRAD was built on a server running LAMP, and it seemed obvious that we
should use open-source PHP classes in its development. PHP Extension and
Application Repository (PEAR) modules were used for database access, form
generation and processing and basic error handling. An existing error class was
modified to warn of an error but hide the full message from the user.

Whenever I needed a particular function, I went looking for an open-source
module before writing my own. Doing so dramatically sped up the
development cycle (see Table 1 for a list of modules used in BRAD).

Table 1. Open-Source Modules Used in BRAD

 Meeting Expectations

Because the BRS system had been around for so long, staff had refined their
use of the system to a high degree. BRS did have a powerful and fast search
facility. It was able to search for particular words in all or any fields specified by
the user. Some quirks had to be overcome, however, such as stop words,
words not indexed. These included complete names of some musical groups,
The Who being one example. In this particular case, to find items by The Who
you have to know something else about the group, such as one of the
members (Pete Townsend) or something they wrote (Tommy). Neither
approach always was reliable.

The sometimes unexpected behavior and the difficulty of using a command-
line interface meant that most staff used the music librarian to find items,
simply presenting a handwritten list of requests. Among the expectations for
the new system were an equal or better search capability and a simplified
interface that could be used by anyone with minimal training.

PEAR::DBM Database access.

PEAR::HTML:QUICKFORM Forms on the editing interface.

PATUSER
User management and control of editing

access.

Error Reporter Class
Heavily modified to allow swapping of error

messages with the main content of page.

Paginator
Pagination of results. Modified to allow parsing

of URL into the class.

One of the most powerful features of BRS was that you could limit search terms
to certain fields, for example:

Mozart.cp. piano

would return anything with Mozart in the composer (cp) field and piano in any
field. We decided to retain this syntax in BRAD so that power users still could do
the kinds of searches they were used to doing. We had planned to add an
advanced search page for BRAD; however, this syntax has turned out to be so
flexible that we haven't needed it.

 Overcoming Limitations

We faced several challenges with the project. Most of them had to do with
modifying MySQL's default behaviors to suit our requirements. The first
challenge was to remove all stop words—the list of words not indexed by
MySQL due to their presumed commonality in the data. In our situation, every
word is considered important.

In MySQL, removing stop words is achieved simply by adding the following line
to the MySQL configuration file before adding anything to the database:

ft_stopword_file = ""

The second challenge was to allow searches for words smaller than the four-
character limit typically used by MySQL. The BRS system indexed every word
regardless of size, apart from those listed as stop words, and removing all stop
words would make any search results more in-line with the terms entered.

This problem was solved by doing two things. First, we reduced the index word
size to three characters by adding the following to the config file:

set-variable = ft_min_word_len=3

Because of the amount of data, these settings were considered to be
acceptable performance trade-offs.

The second thing we did was implement a smart query engine that adapted the
query, depending on the shortest word in the search terms, before sending it
MySQL. This allows full-text searching regardless of the length of any search
term.

The last challenge was to make all searches AND by default. MySQL's boolean
full-text mode is an OR search when no modifiers are used. You normally would

add a + before each term to make it an AND search. The query engine was built
to add the + automatically when no other modifier is present.

 The Query Compiler

At the core of BRAD is a term parser and a query compiler. The term parser
takes a query, breaks it down and places the components into an array. The
array contains a MySQL modifier, +, -, <, >, ~; an atom, a part of the query string
—either a word or a phrase; and an optional field name.

The term parser automatically adds a + to each atom when no modifier is
present, making all searches AND by default. This is a good thing because users
expect that this is how a search engine will work—the more terms you add, the
more refined the search.

The optional field is used to support advanced searches when particular words
are required in a specific field. In BRAD we retained the . field search operator.

When a normal search is undertaken, the query compiler interrogates each
table within the scope of the search and returns a list of full-text fields for each.
These are used to compile a query that spans all the full-text fields.

The query compiler can manage a mix of full-text general terms and non-full-
text, field-specific terms. The query compiler allows BRAD's data sources to be
extended almost without limit and the generated queries to adapt dynamically
—removing the need for static query boilerplates for each object class that
represents real objects in the database.

A standard Web page form allows the user to control all aspects of the search
(Figure 2). Users can select as few or as many zones or tables as they want.
These can be customised to meet company and user requirements.

Figure 2. An Explanation of the BRAD Search Interface (See Table 2)

Table 2. Fields in the Search Interface

1a: Search
Area

This is where the search terms are entered.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7774f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7774f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7774f2.large.jpg

1b: Search
Button

Press to search.

2a: Past
Searches

Opens an area that shows searches made in the past. Items
in this list can be clicked to do the search again.

2b: Latest
Shows the latest entries in Works, CFMS and NATS data

sources. Limited to 250 from each, and sorted with the latest
at the top.

2c: Fewer
This link (and the one on the next row) toggles between More

and Fewer and reduces or increases the number of BRAD
search options that show.

3a: Zone

BRAD divides its data into zones that relate to different parts
of the company. Each zone has a number of different data

sources. The zone selector allows you to choose the area of
the company in which you'd like to search.

3b: In
This selector allows you to determine which data in the zone
will be searched. You typically can search across all data in a

zone or only one type of data.

4: Order
by

5: Media
You can ask BRAD to search only for records that are stored

on certain types of media.

6: Count The number of items displayed per page.

7: Display
Mode

Display modes relate back to the old BRS system and allow
the user to choose different summaries for the search

results. Display modes can be customised, so if users need a
special format it can be added.

8: Show
Results

In tabs or as a list. BRAD's normal mode displays the results
of each search under a tab-style interface. In list mode, it

prints out a list under individual headings. List mode can be
used to make lists for printing or pasting into e-mails.

9: Show
Details in

This selector allows users to choose between viewing full-
record data, by clicking on the link for an item, in a new

window or the current browser window.

 Extending BRAD

BRAD was written to be extensible in all respects. The data searching can be
extended to any kind of data, and specific kinds of searches can be applied to
that data.

One of the problems that existed in our company was the use of different
database applications for different tasks, with different data being spread
across several applications. Our two radio networks use an application called
Selector to schedule music items for air. One database, with around 10,000
music tracks, is used for National Radio, while 100,000 music tracks spread
across five databases are used for Concert FM. Five databases are used for
Concert FM due to limitations in the size of data that Selector can handle.

If a staff member wanted to search for a piece of music, he or she would have
to go to each of three applications—BRS, National Radio Selector and Concert
FM Selector. There was no way to search all of these at one time.

Fortunately, Selector has a utility to export data in XML format. Although there
is no documentation for this and none could be obtained, Bruce was able to
determine how to run the export utility and FTP the data to the BRAD server
from a Windows workstation. This is done each morning, and a Perl script is run
on BRAD to import all the data. The five Concert FM databases are merged into
one table, as all the data is unique.

The original search module was extended to search more than one table and
return the results, regardless of the number or type of fields. Results are
displayed in a tab-style manner (Figure 3).

https://secure2.linuxjournal.com/ljarchive/LJ/131/7774f3.large.jpg

Figure 3. A Truncated Page of Results

https://secure2.linuxjournal.com/ljarchive/LJ/131/7774f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7774f3.large.jpg

You can see the first results from the Works table. The other inactive tab shows
the number of results in the CFM Selector table. Depending on the scope of the
search and the results, any number of tabs might be showing. Producers now
can search any of the music data from one simple interface.

Since the first Alpha version was released, many other new features have been
added at the request of the staff. Among these are a search history and a
shopping cart. The cart can hold items from any table. Carts can be saved and
restored, and once created, a cart number also can be e-mailed to the librarian.
This saves staff having to print or e-mail whole lists of material—they simply e-
mail the cart number.

 Finding NZ Content and Duration Search

The most recent feature that was added was the alias search. An alias replaces
a more complex set of terms that might be used a lot. An example of this is a
search for New Zealand content—music that contains NZ artists or was
composed by a New Zealander. This is useful as we have self-imposed NZ
music quotas for both networks.

Over many years of data entry and staff changes, different fields and identifiers
were used to indicate NZ status in the main Works database. The NZ Music
alias automatically adds the required terms and fields to the query as an OR
search. This was achieved by building a new class on top of the term parser and
using it to extract any aliases from the query. The parser then adds the
required parameters to the query stack maintained by the Query Complier.
Here are some BRAD Alias examples. The query:

Mozart @nza

gives us Mozart and any NZ content field true. The actual query looks like this:

SELECT * FROM brs.works WHERE (cf REGEXP '[[:<:]]local[[:>:]]' OR cf
REGEXP '[[:<:]]nz[[:>:]]' OR lq REGEXP '[[:<:]]nz[[:>:]]') AND MATCH
ti,ra,cf,cd,cp,so,at,notes,lq AGAINST ('+Mozart' IN BOOLEAN MODE) ORDER BY ti asc LIMIT 1000

A duration search also was added so that producers can find material within
certain ranges—it is quite common to need music by a certain composer of
approximately a known duration. In BRAD, numbers in square brackets are
treated as a duration query. BRAD can do approximate searches or searches
within a range of durations. See the sidebar for some examples.

BRAD Duration Examples

Less than:

brahms [<20]

Between (you also can specify a range of times). The following looks for
anything with mozart in it that is between 20 minutes, 30 seconds and 30
minutes, 15 seconds:

mozart [20:30-30:15]

Approximate matches—this looks for the time you specify plus or minus 10%; c
is short for circa:

mozart [c 24]

You also can add a time range. The following input retrieves items 24 minutes
in length, plus or minus 1 minute:

mozart [c 24 r 1]

Complex duration searches— the following searches for pieces with Beethoven
as the composer that last between 20 and 22 minutes:

beethoven.cp [20-22]

The query compiled for the last search:

SELECT * FROM cfm.cfms WHERE (du <= 1320)
 AND (du >= 1200)
 AND MATCH ti,ca,ma, ra,cd,cp,so,at,notes AGAINST
 ('+beethoven' IN BOOLEAN MODE)
 AND MATCH cp AGAINST ('+beethoven' IN BOOLEAN MODE)
 ORDER BY ti asc LIMIT 1000

The Concert FM Selector data mentioned earlier has NZ artist and duration
fields set correctly for all data, so these aliases can be used reliably on the
whole data set. Because there is a mix of item types in the Works data, only
those with a valid duration are searched. In the past, it was not possible to do
any duration search at all within Works, so this is an improvement.

 The Future

At the time of writing, I was asked about putting the company phone directory
into BRAD, and a proof-of-concept pronunciation guide was added for our
News department.

 Conclusion

This project has enabled us to replace a key Radio NZ cataloging system and
provide enhanced functionality to staff at a low TCO. It also has provided a
storage platform for new and legacy data.

In the future, it may be possible for programme producers to do a single search
on a composer or artist and get back a whole set of results that includes music
tracks, interviews and archival material. It even could indicate the correct
pronunciation of the person's name and provide his or her phone number.

BRAD probably will continue to be a work in progress as we find more uses for
it. This is one of the benefits of DIY-IT—the system is ours to extend or modify
as we see fit, whenever we need to do so.

Resources for this article: www.linuxjournal.com/article/7968.

Richard Hulse is a Senior Recording Engineer for Radio New Zealand and
currently is working on a number of IT projects, including improving the Radio
NZ Web site (www.radionz.co.nz).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7968
http://www.radionz.co.nz
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Managing Projects with WebCollab

Mike Cohen

Issue #131, March 2005

This undiscovered gem of an open-source project brings project status
information and important project files together with one streamlined Web
interface. Try it and see if it fits your work style.

As a network consultant I frequently work with small teams on any IT-related
project. For any given job, I have to coordinate with other consultants, clients,
data-line vendors and office staff. I am constantly in need of a way to update
coworkers on various aspects of a project, and oftentimes this includes sharing
files, notes and comments. My corporate days have taught me that this can be
done with a combination of the Microsoft Exchange public foldering system
and Microsoft Project.

Although the Microsoft products are able to give me most of what I want, they
have their limitations. First, Exchange/Project is a proprietary setup geared
exclusively toward Microsoft Windows users and, more specifically, Microsoft
users within the same organization. Second, Microsoft's Exchange package is
not cost effective for most small companies. Third, although MS Project and
other Gantt charting applications are the de facto standard for project
management applications, they tend to take a macro-management approach to
jobs and are a better fit for larger-scale operations like construction. Finally, I
wanted integration between the file repository and the project status
information, so that a project could be managed by a group of people with the
proper collaboration between parties and across organizations.

I stumbled upon WebCollab on SourceForge and was pleasantly surprised.
According to its creators, WebCollab is “a collaborative Web-based system for
projects and project management; WebCollab is easy to use and encourages
users to work together. The software is functionally elegant and secure without
being cumbersome for users or graphically intensive.”

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

I found all of the above to be true. The authors of the software designed with
function over form in mind, and the interface is extremely plain and simple with
speed and security as its primary goals.

WebCollab is ideal for projects involving small groups of users who have a fairly
constant stream of communication. More than simply a multiuser to-do list,
each created project carries with it a task list, due dates, color-coded
completion status meters, priority settings, message boards and a file upload
section. When any task has a change in status, there is an option to notify any
involved users or groups by e-mail. Between the continuous message board
banter, the file exchange and status e-mails, WebCollab creates an interactive
environment for project management. A manager easily could use this as a tool
to delegate tasks and keep tabs on exactly what is going on by having a
constant dialog with employees, all through this software.

WebCollab has quite a few great features, and coupled with its simple install
and nonexistent learning curve, it's a great fit for a small office environment or
for projects involving people from different organizations. For example, I use
this as a tool to keep my clients updated on the status of my work for them, as
well as a tool to communicate with the other engineers and technicians I may
be working with.

 System Requirements/Architecture

The software consists of an Apache-hosted PHP front end to a database back
end. Once the PHP pages are made available with the Web server, any
computer with connectivity, a Web browser and user credentials can access
WebCollab.

I found the optimal configuration to be a Linux, Apache, MySQL, PHP box, but
any operating system capable of running Apache, PHP and either MySQL or
Postgres can be used. The database can be hosted on a separate server if
necessary. I am currently using a Pentium III 500MHz workstation with 256MB
of RAM and a 20GB hard drive without issue, and I probably am overdoing
things for my load of about 15 users. This software is perfect for the old system
you have been meaning to use for something productive or as a lightweight
service on an existing server. All personal biases aside, I'd recommend using
Linux over Windows, or even Mac OS, because of the ease and security of Linux
remote administration and its lower cost. To set up WebCollab, you need the
ability to create a database and change a few permissions within the WebCollab
directory. Depending what your file upload traffic is like, you shouldn't need
more than a few hundred megabytes of space in your Web directory, because
the individual file upload size is limited to 2MB.

With Apache and MySQL under the hood, I have had no stability issues, and the
quality of the PHP code seems, in general, very solid. That being said, this is not
a software package I would recommend for an enterprise-level organization.
With a small user base, WebCollab is unproven under heavy load. Most
corporate firms also put an emphasis on support when choosing software
packages. With WebCollab's current status as a small open-source project,
there is not a programmer standing by 24/7 to help with any data catastrophes.

 Installation

Installation is extremely simple and took me less than ten minutes. I used my
distro's vanilla installations of Apache, PHP and MySQL, which worked perfectly.
Linux beginners will find the most difficult part of the install to be creating a
new user in MySQL that has the appropriate access to the database. Aside from
that, this is definitely something that a person who is just beginning to
experiment with Linux can install without complication.

There are two methods of installation, one using the command line and the
other through a Web-based setup routine. I chose the latter. For the sake of an
example, I use collab.example.com here.

Download and unzip the tarball into your Web directory:

tar -zxvf WebCollab-1.62.tar.gz

Change the permissions on the main config file:

cd WebCollab-1.62/config
chmod 666 config.php

Point a Web browser to collab.example.com/WebCollab-1.62/setup.php. This
guides you through the automated portion of the setup, which includes
creating an SQL database and running a table creation script, as well as setting
four environment variables in the relevant config.php file.

Restore the permissions on the config file:

chmod 664 config.php

 User/Groups

A user name and password are required to access any part of the software and
determine which projects can and cannot be viewed and/or edited. As with
most other systems, only administrative users have the ability to add or remove
accounts. A user also can be designated as a project or task owner, giving that

http://collab.example.com
http://collab.example.com/WebCollab-1.62/setup.php

account the ability to perform administrative tasks on that particular project or
task.

Groups also play an important role in task designation. Projects can be
assigned by the owner to a user or to an entire group. Subgroups or task
groups can then be used to further delegate tasks within a given project.

Figure 1. Administrators can create new user accounts from this page. The e-mail address
entered here is used for the e-mail notifications for status updates.

The access control is fairly comprehensive and provides a lot of flexibility for
administrators and project owners. For example, I frequently have projects with
other engineers, which required the ability of all parties to edit tasks, mark jobs
complete and change due dates. In these cases, I assign everyone in my group
edit rights to the project. I also have projects that I allow clients to view, and in
these cases, I want to restrict them to read-only. I also do not want clients to be
able to view any project other than their own. Both of these details easily are
achieved by checking or unchecking the All users can view or Anyone in the
user group can edit buttons.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f2.large.jpg

Figure 2. The creation form for a new project gives you the opportunity to set up access
control and user notification, simply by checking the appropriate boxes.

 Project/Task Creation

WebCollab is ideal for projects that can be broken down into a series of tasks
with brief, one or two sentence, descriptions. Each project and task has a
description field, start date, end date, priority and assigned group. When a task
is created for a given project, it is treated as a subproject, with the same
information fields and editable data as its parent job. This portion of the
software is similar to most versions of popular to-do lists, but it adds the
flexibility to be used as a quick checklist or a fairly in-depth breakdown of a task
with running commentary.

The project and task views are where the software really shines. As mentioned
before, each has its own file upload section and message board. This is where
the collaborative aspects of WebCollab really set it apart from a traditional to-
do list. Users can ask each other questions, make comments, upload relevant
documents and much more. This is what separate WebCollab from task
management applications and makes it more of a project-oriented groupware. I
find the message board element of WebCollab to make things more interactive
and thus more interesting for everyone involved.

Figure 3. Task views include links to relevant files. This VPN task information page makes it
easy to find the necessary configuration file.

 Views and Navigation

The ability to navigate between views is intuitive and easy. Almost everything is
a hyperlink, which, when clicked, takes you to a more in-depth view of that
particular piece of data. For example, in the main view for a project, each task is

https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f3.large.jpg

represented by its title, and clicking on that title takes you to the main view for
that task, complete with summary, due dates, related files and more.

Every user or group name displayed within the context of the project or task
descriptions is also a link to more information about that particular user.
Everything initially is represented in a shorthand view, with more information
available when clicked. Although this may not seem like much, it becomes
handy and makes toggling between various views a breeze. A navigation bar
also is present along the left side of the screen at all times.

As is typical with project management packages, there are a variety of different
views, each of which gives a slightly different perspective. When a user logs in,
he or she is initially at Home Page view. This shows a listing of projects and
tasks that the user is involved in with completion status and due dates. Two
other key views are the To-Do List view and the Calendar view; both are self-
explanatory. Again, interpreting each view is far from complex, which is not
always the case with project software. All views can be filtered by both user and
group and have a print view button, which displays the current screen in a
more paper-friendly format.

Figure 4. The Calendar view is basic, but it provides a nice visual breakdown of what has to be
done when.

 Security

WebCollab is best fitted for a small or home office environment. Being a
noncommercial open-source project, the only real support available is through
the message board on the Web site. Although that may be excellent, it usually is
something that corporate higher-ups will frown upon. Given its tiny user base, I
doubt that software like this is a target for attacks, but Apache and MySQL are.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7885f4.large.jpg

For those who are not intimately familiar with Apache, PHP and MySQL, I would
advise looking into using some of the Linux distro-specific security update tools,
like Debian's apt-get or SuSE's YaST, to keep these packages up to date and as
secure as possible.

The user management and access-control tools within the software itself do a
good job of limiting what people can and cannot see, and these controls are
granular enough that they can be customized on a user, group or subgroup
level. All accounts and passwords are stored in MySQL with the passwords
obviously being an encrypted field. It's probably a good idea to configure your
Web server to serve this with SSL, over port 443, to deter any potential
snoopers.

I also would suggest that anyone putting mission-critical data on this do a bit of
homework on the interaction of PHP and MySQL with respect to passing
database user names and passwords. All in all, I am fairly satisfied with the
developers' efforts to make this software as secure as possible given its target
audience.

 Final Thoughts

WebCollab's beauty is in its simplicity. It's easy to install, use and maintain. It
provides a comprehensive and flexible take on small-scale project
management. Some users may be deterred by its lack of aesthetic detail, but if
you prefer streamlined interfaces and quick-to-render pages to other bells and
whistles, I would definitely suggest giving WebCollab a try. It's built on proven
technology, so it's fast and stable, and because it's Web-based, it's essentially
clientless. Users can be added to the system, and creating tasks and projects
takes minutes. I also recommend this for transient users looking for a
centralized to-do list that they can access from anywhere, as it's a very useful
single-user tool.

As someone new to the Open Source community, I've found browsing sites like
Freshmeat and SourceForge to be a lot like watching independent films or
listening to indie rock bands. Every once in a while, you come across an
unbridled gem that no one seems to know about; I've found WebCollab to be
one of these.

Resources for this article: www.linuxjournal.com/article/7965.

Mike Cohen is a cofounder of Antropy, Inc., a small-business IT-consulting firm
in Southern California. He enjoys spending time with his family and tow-in
surfing at Todos Santos Island in Mexico.

Archive Index Issue Table of Contents

http://www.linuxjournal.com/article/7965
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 A Database-Driven Web Application in 18 Lines of Code

Paul Barry

Issue #131, March 2005

From zero to Web-based database application in eight easy steps.

The LAMP combination of Linux, Apache, MySQL and a programming
technology (typically Perl, Python or PHP) is a powerful one. Once you've built
one Web-based database application, however, you've built them all. From a
programmer's perspective, things become boring and repetitive pretty quickly.

I recently worked on my first Web application. I built it on Linux, of course,
running through Apache and talking to MySQL. I used Perl as my glue language,
with CGI figuring heavily. I created all the code to talk to a MySQL table, adding/
editing/updating as need be. And it all worked, which was good. What was bad
was, I was faced with repeating this activity (and effort) for each of the
remaining tables in my database. In a time-honoured tradition among Perl
programmers, I started to look for ways to be constructively lazy. There had to
be a better way. After a few false starts and some searching, I found Maypole.

Initially created by Simon Cozens and maintained by Sebastian Riedel, Maypole
is a rapid application development framework for Web applications. Maypole's
home page promised a fully functioning application in about 20 lines of Perl
code. This sounded too good not to try.

Having tried Maypole, I can confirm that Simon and Sebastian are not lying.
Only a handful of lines of code is required to build a very functional application.
Some setup is required, but—critically—this activity is not programming. Once
the setup is complete, any number of applications can be created, each with a
handful of lines of code. In the rest of this article, I step you through building an
application with Maypole.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Step 1: Install Linux (If Needed)

This step used to require an entire article to describe. Today, a single sentence
summarizes. Pick your favourite distribution, and install it.

Having recently taken delivery of a new PC, I grabbed Fedora Core 3 and
custom installed everything. If you don't have this luxury, be sure to install the
following packages from your chosen distribution: httpd, httpd-devel,
mod_perl, mod_perl-devel, mysql (client and server) and Perl.

 Step 2: Prepare Your Apache/mod_perl Environment

Increasingly, modern distributions are shipping with release 2 of Apache and
version 1.99 of mod_perl, as opposed to the entrenched 1.3.x release of
Apache. Thankfully, Maypole can work with either release of Apache and also
can be configured to use CGI (if mod_perl is not available). My Fedora
installation shipped with release 2.0.52 of Apache and 1.99_16-3 of mod_perl,
so that's what I use here. Users on the Maypole mailing list have reported
successful installations on the vast majority of Linux platforms, including SuSE,
Debian and Red Hat. Maypole also can be installed on Apple's Mac OS X and,
with some extra effort, Microsoft's Windows.

As root, I edited Fedora's Apache configuration file at /etc/httpd/conf/
httpd.conf and commented out the ServerTokens directive. I then arranged to
start Apache automatically at boot time, and fired up the Web server using
these commands:

chkconfig httpd on
service httpd start

The lynx text-based browser can be used to check the status of the server with
this command:

lynx -head -dump http://localhost/

The results confirm that Apache and mod_perl are up and running, as shown
on the third line of this output:

HTTP/1.1 403 Forbidden
Date: Wed, 17 Nov 2004 23:30:01 GMT
Server: Apache/2.0.52 (Fedora)
 mod_perl/1.99_16 Perl/v5.8.5 DAV/2
Accept-Ranges: bytes
Content-Length: 3931
Connection: close
Content-Type: text/html; charset=UTF-8

Happy that all was okay, I re-edited httpd.conf and uncommented the
ServerTokens directive, as it is best not to give away too much about the

internals of your Web server to potential attackers. While in httpd.conf, I
changed the ServerAdmin directive to a more appropriate e-mail address, then
set ServerName to the DNS name for my server. I also made a note of the value
set for DocumentRoot, which was /var/www/html on my machine.

 Step 3: Prepare MySQL

Depending on the distribution you are running, MySQL already may be
installed. If MySQL is missing, download it from your distribution's download
area, or go to the MySQL Web site. On my Fedora machine, I issued the usual
commands to prepare MySQL for use, while logged in as root:

chkconfig mysqld on
service mysqld start

With MySQL running, I then set the MySQL administrator password:

mysqladmin -u root password 'passwordhere'

 Step 4: Install Maypole

Maypole interacts directly with Apache through mod_perl. To work with Apache
2, a development library called libapreq2 needs to be fetched from the CPAN
repository and installed into Perl. I downloaded libapreq2-2.04_03-dev.tar.gz
from CPAN. Prior to installing the library, I upgraded the ExtUtils::XSBuilder
module that ships with Perl. A single command, issued as root, suffices:

perl -MCPAN -e "install ExtUtils::XSBuilder"

If this is the first time the CPAN shell has executed, you'll be prompted to
configure the local CPAN module. Be sure to select follow when asked about
fetching prerequisite modules. With the module upgraded, I installed the
libapreq2 library with the usual set of Perl module installation commands:

tar zxvf libapreq2-2.04_03-dev.tar.gz
cd libapreq2-2.04-dev/
perl Makefile.PL
make
make test
su
make install
<Ctrl-D>

The actual installation of Maypole starts by invoking the CPAN shell as root:

perl -MCPAN -e "shell"

As Maypole depends on a large collection of prerequisite CPAN modules,
installation can take a while. Prior to actually asking the CPAN shell to install
Maypole for you, issue the following commands to ensure that some of the
more troublesome modules are dealt with:

cpan> install CGI::Untaint::date
cpan> force install Class::DBI::mysql

I had to force the installation of Class::DBI::mysql as a number of tests failed,
effectively aborting the automatic installation. By forcing the install, the broken
tests are ignored, allowing the install to proceed. With the prerequisites dealt
with, install Maypole with this CPAN command:

cpan> install Maypole

A series of automated interactions with the CPAN repository begin after this
step. Keep an eye on what's going on, because at certain points, you have to
respond to some self-explanatory prompts. When all was done and dusted, the
most recent release of Maypole—2.04 at the time of this writing—was installed
on my machine.

 Step 5: Create a Database and Some Tables

Returning to MySQL, I logged in as administrator and issued these commands
to remove any default accounts:

mysql -u root -p

mysql> use mysql;
mysql> delete from user where User = '';
mysql> flush privileges;

I then created a new database, together with a user to act as owner of the data:

mysql> create database CLUB;
mysql> grant all on CLUB.* to manager identified
 by 'passwordhere';
mysql> quit

These commands create the database, called CLUB, and add a user, called
manager, to the database system. For the purposes of this article, this simple
application manages data about an under-age soccer club. In addition to
storing personal details about each player, the system maintains data on which
players are in which squads, as well as any medical conditions players may
have.

Here are the SQL files that I used to define the tables used within the CLUB
database. The first file, create_player.sql, creates the player table:

create table player
(
 id int not null auto_increment
 primary key,
 name varchar (64) not null,
 date_of_birth date,
 address varchar (255),
 contact_tel_no varchar (64),
 squad int,
 medical_condition int
);

The second file, create_squad.sql, creates the initial list of squads:

create table squad
(
 id int not null auto_increment primary key,
 name varchar (32) not null
);

insert into squad (name) values ('--');
insert into squad (name) values ('Under 8');
insert into squad (name) values ('Under 9');
insert into squad (name) values ('Under 10');
insert into squad (name) values ('Under 11');
insert into squad (name) values ('Under 12');

The squad table is initialized to a reasonable set of default values. The third and
final file, create_condition.sql, creates a list of possible medical conditions:

create table condition
(
 id int not null auto_increment primary key,
 name varchar (64) not null
);

insert into condition (name) values ('--');
insert into condition (name) values ('Asthma');
insert into condition (name) values ('Epilepsy');

As with the squad table, the condition table is initialized with some default data.
The data item in the squad and condition tables is called name. The significance
of this point will be returned to later in this article.

Use the SQL files to create the tables within the database:

mysql -u manager -p CLUB < create_player.sql
mysql -u manager -p CLUB < create_squad.sql
mysql -u manager -p CLUB < create_condition.sql

As can be guessed, the CLUB database maintains data on players. Players
belong to a squad and may have a medical condition.

 Step 6: Set Up Your Application

With the database ready and Maypole installed, it's time to configure the
application. A directive needs to be added into the Apache httpd.conf

configuration file to set up a mod_perl handler for the Maypole application. I
added the following to the end of the configuration file:

<Location /Club>
 SetHandler perl-script
 PerlHandler ClubDB
</Location>

These lines tell Apache that when a request is made for the /Club URL, it is to
be handed off to the ClubDB Perl script, which we write in the next step. Use
the following commands, as root, to set up the URL location:

mkdir /var/www/html/Club
cd /var/www/html/Club
cp -r ~/.cpan/build/Maypole-2.04/templates/* .
cp maypole.css ../club.css

Having first created a directory to contain my application's URL underneath
Apache's root directory, I then copied the default templates that ship with
Maypole into this location. I also copied Maypole's CSS file into my Web server's
DocumentRoot, giving it a name that corresponds to my application.

One final setup activity involves creating a configuration file within Apache's /
etc/httpd/conf directory to hold the application's MySQL user ID and password.
Called ClubDB.conf, this file contains these lines:

[client]
user=manager
password=passwordhere

 Step 7: Write Your 18 Lines of Code

The code for the Soccer Club Database resides in the ClubDB.pm file. Every
Maypole application starts with a package statement declaring a Perl
namespace. Strictness is turned on, then the base Maypole module, called
Apache::MVC, is used:

package ClubDB;

use strict;

use base 'Apache::MVC';

The code then establishes a connection to the database, using the user ID and
password from the named configuration file:

ClubDB->setup("dbi:mysql:CLUB;
 mysql_read_default_file=
 /etc/httpd/conf/ClubDB.conf");

A few more lines of code inform Maypole of the base Web address for the
application, as well as a list of tables in the database to which to provide access.
For this simple application, it makes sense to provide access to all the tables:

ClubDB->config->{uri_base} =
 "http://webmason.itcarlow.ie/Club/";

ClubDB->config->{display_tables} =
 [qw[player squad condition]];

When it comes to squads, my application allows the user to view, edit or delete
squad names. Specifying this takes a couple of lines of code, one of which sets
up another namespace:

package ClubDB::Squad;

sub display_columns{ "name" };

ClubDB::Player->untaint_columns(
 printable => ["name"]);

The untaint_columns method identifies the type of data expected in the
column, as well as indicates to Maypole that the column can be edited using the
Web interface. Medical conditions are handled in the same way:

package ClubDB::Condition;

sub display_columns{ "name" };

ClubDB::Condition->untaint_columns(
 printable => ["name"]);

The code for the player table is more complex but not by much. After declaring
another namespace, two calls to the has_a method establish the links between
the player table and the others. The link is specified in terms of only the
declared namespaces:

package ClubDB::Player;

ClubDB::Player->has_a(
 squad => "ClubDB::Squad");

ClubDB::Player->has_a(
 medical_condition => "ClubDB::Condition");

For players, we list the columns to display using the display_columns method.
Doing so allows the programmer to control the order in which the columns
appear within the Web interface. If display_columns is not used, Maypole
displays the columns in alphabetical order, which may not always suit your
needs. The invocation of untaint_columns identifies the types of data that can
be edited within each of the columns. The code concludes with Perl's familiar 1;,
which is required of all Perl modules:

sub display_columns{ qw(name address
 date_of_birth contact_tel_no
 squad medical_condition) };

ClubDB::Player->untaint_columns(
 integer =>
 ["squad", "medical_condition"],
 printable =>
 ["name", "address", "contact_tel_no"],
 date =>
 ["date_of_birth"]);

1;

Count the semicolons. Bearing in mind that the presented code has been
formatted to fit the printed page, there are only 18 lines of code in all. All that's
left to do is copy the Perl module into a location where Apache and mod_perl
can find it:

mkdir -p /etc/httpd/lib/perl/
cp ClubDB.pm /etc/httpd/lib/perl/

 Step 8: Give It a Go!

Restart Apache before accessing the Maypole application:

service httpd restart

I entered http://webmason.itcarlow.ie/Club/ into the Firefox location bar, and
up popped Figure 1, which, although something, was not quite what I was
expecting.

Figure 1. The Default Maypole Opening Screen

https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f1.large.jpg

For starters, I was expecting to see some nice CSS output, not the plain HTML I
was seeing. To fix this problem, I explored the default template files copied into
the Web server during Step 6. By changing these, it is possible to alter the
appearance of the application, without changing the source code to the
application. The significance of that last sentence cannot be overstated. In
essence, the way the application looks is controlled by the CSS templates. The
way the application behaves is controlled by the code. The data used by the
application is controlled by MySQL. All of this separation of duties makes for a
very productive development environment, as changing one part of the
application shouldn't adversely affect either of the others.

The templates live within a subdirectory called factory, located beneath the URL
of the application, which is Club/ in this case. The factory templates are the
Maypole defaults and are used unless overriding templates are found within
another directory, called custom.

After creating the custom directory underneath the Club/ URL, I copied the
header file from factory to custom and edited it with vi. I changed /maypole.css
to read /club.css, in addition to replacing the “A poorly configured” message
with a more appropriate description of the application. I also copied the
frontpage file from factory to custom and edited it to use a better application
description. Then, I changed the anchor tag within custom/frontpage to read
“Work with the player data” as opposed to the default “List by player” text. With
these changes made, I clicked the Reload button within Firefox, resulting in
Figure 2, which—I think you'll agree—looks a whole lot better.

Figure 2. The Customized Soccer Club Opening Screen

https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f2.large.jpg

Clicking on any of the menu options produces a beautifully formatted input
screen, like those shown in Figures 3 and 4.

Figure 3. The Maypole Front End to the Squad Table

Figure 4. The Maypole Front End to the Player Table

Figure 4 shows the display after the entry of two fictitious players. Notice all the
functionality provided for free. Tabs for each of the tables are located along the
top of the display. Simply click on the tab to display that table's data. Each row
of data has an associated edit and delete button. Click on any column heading

https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7937f4.large.jpg

to sort the display on the data in that column. Perform a search using the
provided search form. Add more players using the add form. Notice the drop-
down menus for the player's squad and medical condition. Click on the field
and a drop-down box appears with the choices available to you. This bit of
magic occurs because Maypole has been told that each player “has a” squad
and “has a” condition. By default, Maypole uses the name data column in the
referred to table to provide the data to these drop-down boxes.

And, that's it—a fully functioning Web interface to an underlying database, in
eight easy steps.

Despite the fact that Maypole is quite new, an active community already has
gathered around it. The mailing list recently split, one for developers and the
other for users, and the Maypole Web site is now hosted by perl.org.

As I hope I've demonstrated, Maypole—once set up—is a breeze to use. Most of
the guts of any Web application is provided for free. Adding additional
functionality also is possible. Maypole is not stuck on MySQL either, as any SQL
DBMS can be used. Refer to the articles and documentation referenced on the
Maypole site for more details.

Resources for this article: /article/7964.

Paul Barry (paul.barry@itcarlow.ie) lectures at the Institute of Technology,
Carlow in Ireland. Information on the courses he teaches, in addition to the
books and articles he has written, can be found on his Web site,
glasnost.itcarlow.ie/~barryp.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7964.html
mailto:paul.barry@itcarlow.ie
http://glasnost.itcarlow.ie/~barryp
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Introducing Ardour

Dave Phillips

Issue #131, March 2005

The heart of your Linux recording studio is the hard-disk recorder. Get started
with Ardour, which brings pro recording features to open source.

Contemporary musicians employ the computer as a digital audio workstation
(DAW) to perform a wide variety of tasks dealing with sound. Typical uses
include recording and editing soundfiles, adding effects and dynamics
processing and preparing audio tracks for a CD master disc.

The centerpiece of the modern musician's computer-based studio is the hard-
disk recorder (HDR). Musicians working on Apple or Microsoft Windows
machines have an impressive selection of HDR systems to choose from, but
until recently Linux users have had nothing truly comparable for professional
work. A professional-quality HDR is a profoundly nontrivial programming
endeavor, and proprietary HDR developers have provided little technical
guidance for would-be designers of an open-source DAW.

Today, thanks to the talent and perseverance of chief designer/programmer
Paul Davis and his talented crew, Linux musicians now have a native-born
professional-quality HDR/DAW, named Ardour.

 What It Is, What It Isn't

Ardour is a multitrack recording and editing system for high-quality digital
audio. Ardour supports audio processing plugins (LADSPA and VST), parameter
control automation, sophisticated panning control and many advanced editing
procedures. Recognized synchronization protocols include MIDI time code
(MTC), a means of encoding SMPTE time code to MIDI; MIDI machine control
(MMC), a set of MIDI messages for controlling transport features of hardware
mixers and recorders; and JACK, a low-latency audio server and application
transport control interface for Linux and Mac OS X.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f1.large.jpg

Figure 1. Ardour is a multitrack recording and editing system that supports consumer and
professional audio hardware.

Professional audio recording hardware supports datatypes not commonly
encountered in consumer-grade systems. A pro DAW can handle audio at
greater bit depth, for deeper amplitude range and precision; at high sampling
rates, for more accurate frequency resolution; and with greater flexibility in
sound location and spatialization. It is not uncommon for professional
recordists to work with 32-bit soundfiles recorded with a sampling rate of
96kHz, more than twice the resolution of compact disc audio.

Ardour is not a MIDI sequence recorder or editor. It knows nothing about music
notation, and it is not designed to be a soundfile editor. Ardour has only a few
built-in signal processing capabilities, and most of its processing power comes
from its supported plugins. Finally, Ardour does not directly provide facilities
for CD mastering and burning, but it is designed to work well with the excellent
JAMin mastering suite.

 Hardware Requirements

The extent of your use of Ardour is limited fundamentally by the capabilities of
your hardware. If a sound card or audio board is supported by the ALSA sound
system, it should work with Ardour; however, standard consumer-grade audio
devices are not suitable for using Ardour to its full extent. You can do great
things with Ardour and a SoundBlaster Live, but for professional work, Ardour
is happiest with a multichannel digital audio interface, such as the RME
Hammerfall and M-Audio Delta cards.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f1.large.jpg

Do your homework before purchasing your audio interface. Check the ALSA site
for up-to-date news regarding supported systems, and try to find others who
can comment on the suitability of a particular card. Ardour can respond to MIDI
parameter control, so study the MIDI implementation charts for any external
equipment you plan to use. See if your mixer specifications support MMC or
MTC. Ardour is designed to work with automated mixer control surfaces, but
again, your equipment has to support the features.

The question of a sufficient base computer system often pops up on the Ardour
users mailing list. Satisfactory results have been reported with a 500MHz CPU,
but such a system is too limiting for professional use. A fast CPU ensures
accurate synchronization while recording or playing multiple audio tracks, and
it is absolutely necessary if you intend to use many effects. For example, a good
reverberation effect can be intensely CPU-hungry. You also should have a large,
fast hard disk, properly tuned with the hdparm utility for maximum
performance. Multiple tracks of streaming audio data absolutely require a
powerful CPU and a fast hard disk to ensure perfect synchronization. Also, 32-
bit digital audio files can be huge, and a typical recording session can create
nontrivial storage demands. For professional use, you are advised to equip
your system with two disks—one for your system and application software and
one dedicated only to session audio storage. The Ardour Web site offers
suggestions for specific CPUs, hard-disk specifications and even recommended
motherboards. For best results with Ardour, follow the designer's advice.

Aaron Trumm's excellent article “The Linux-Based Recording Studio” [Linux
Journal, May 2004] describes room considerations and the setup and
configuration of external equipment needed for serious recording. Rather than
rehashing Aaron's recommendations, I simply refer readers to that article for
advice on selecting microphones, mixers, monitor speakers and other outboard
gear.

 Software Requirements

The current public version of Ardour is available as source code. Packages are
available for various Linux distributions, including Red Hat/Fedora, Mandrake,
Debian and Slackware; see the on-line Resources. CVS access is selective at this
time, but a nightly tarball is available from the Ardour Web site. Compiling
Ardour from its source code is uncomplicated, and complete instructions are
included with the tarball.

Check the Ardour Web site for the latest support software required to build and
install the program. Ardour's dependencies include up-to-date installations of
the ALSA kernel sound system, the JACK audio server, the LADSPA plugin API
and collections and various other audio-related software components. You can

configure your existing Linux installation for optimal performance with the
program, but if you're serious about using Ardour you are advised to install an
audio-optimized system such as AGNULA/Demudi, a Debian-based distribution,
or Planet CCRMA, Red Hat/Fedora packages. Slackware users should install
Luke Yelavich's AudioSlack packages, and Mandrake users can find all
necessary packages at Thac's site.

JAMin is a suite of post-production audio utilities designed for the preparation
of tracks destined for burning to a master CD. This mastering process uses
tools such as compressors, equalizers and limiters to reduce frequency and
amplitude imbalances between tracks. If you plan to record a full CD with
Ardour, you should plan on mastering it with JAMin.

 Major Features

Any modern HDR performs three basic functions, corresponding to the typical
work-flow stages of recording, editing and mixing digital audio. Each stage can
be quite complex within itself, but Ardour's user interface sensibly organizes
the program's complexities.

Ardour records to the available hardware limits. If your audio interface
supports 32-channel I/O and there's an ALSA driver for it, you should be able to
work with 32 simultaneous audio channels. Assignment of channels to tracks is
completely flexible, and each track supports mono or stereo input. Ardour's
synchronization capabilities currently work best with JACK-compliant
applications, such as the Hydrogen drum machine and Rosegarden audio/MIDI
sequencer. Much work, however, is going into improving support for MIDI time
code.

As mentioned above, Ardour is not a soundfile editor, but it does include a
variety of edit processes optimized for multitrack recording, such as typical and
not-so-typical cut/copy/paste operations, grouped track editing and fine control
over track and segment relocation. Ardour offers its own time stretching and
amplitude normalization, but the bulk of its processing power comes from
LADSPA plugins.

LADSPA

The Linux Audio Developers Simple Plugin Architecture (LAPSDA) is an easy-to-
implement programming interface for hosting effects and other plugins in
Linux audio applications. The API has been adopted widely by Linux audio
developers to the point that users expect LADSPA in new sound and music
software.

Ardour lets you work with your data as tracks, regions, ranges, chunks and
groups. Data display is variable: you can enlarge or reduce a track's display, and
grouping lets you view only the member tracks in a specified edit group. Figure
2 shows off Ardour's track display resizing feature, along with the region editor
and the gain automation curve.

Figure 2. Resized Tracks, the Region Editor and a LADSPA Plugin

How Many Tracks?

As it's used by recordists, the term track properly applies to a concept derived
from the possibilities of recording sound to magnetic tape. Digital audio is
recorded to your hard disk in a different manner, but the old terminology
persists in the graphic representation of multiple audio streams as linear
tracks. The concept of a channel is perhaps best understood in the context of a
mixer. Multichannel mixers provide a number of inputs (channels) whose
signals can be combined and routed freely before being sent to the mixer
outputs. Likewise, a multichannel digital audio interface provides a number of
channels to be combined and routed to your HDR's tracks. Channel limits are
determined by your interface hardware.

As mentioned earlier, consumer audio interfaces rarely venture beyond stereo
I/O, while professional hardware can deliver 50 or more channels. Disk space is
consumed rapidly by alternate takes, temporary tracks and backup copies of
your session files. Your software may limit the number of available tracks, but
your disk speed determines the number of available simultaneous tracks.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f2.large.jpg

Remember, high-quality digital audio is a heavy hitter on your system
resources.

Ardour's mixer panel presents a series of per-track fader strips and a master
control strip. A track strip is divided into sections corresponding to a “from the
top downward” data path. Input begins at the top of the strip and passes
through controls such as signal polarity and track solo/mute status. It moves on
through pre-fader plugins, the track fader itself and post-fader plugins before
reaching its pan position and heading out to the output or outputs, typically but
not always a master bus. Other notable features of Ardour's mixer include gain
automation, record and playback fader movement; MIDI control to and from
mixers with MIDI machine control; and plugin parameter control automation.

Figure 3. In the Mixer panel, think of audio data moving from the top down through each
track strip.

Thanks to Ardour's use of Erik de Castro Lopo's sndfile library, you can import
and export audio data (track, region and session) to and from Ardour in any

https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f3.large.jpg

format supported by libsndfile. Currently, that's about 20 different audio file
types, including the most popular consumer-grade and professional formats.

 A Session with Ardour

My goal in the following example session is to demonstrate how Ardour
functions as a multitrack recording system. I've tried to keep technical
terminology to a minimum, but this article does not intend to be a primer for
digital recording. Basic information on the subject can be found at
www.homerecording.com, while more advanced topics are covered at
www.prorec.com. Many other on-line and hard-copy resources can be found
with relevant searches on Google and Amazon.

Session hardware included an M-Audio Delta 66 digital audio interface, a
system that includes a PCI card and a breakout box that together provide 4×4
analog I/O and 2×2 digital I/O. The digital ports can be configured for either S/
PDIF, a high-quality consumer-grade digital I/O or AES/EBU, a standard for the
recording industry. Each input point is a stereo port, effectively giving me a
possible total of 12 input channels, with far more flexible routing than is
possible with a consumer-grade, stereo-only sound card.

Figure 4. Delta 66 I/O Channels Displayed in qjackctl

I employed two external mixers for the session. A Yamaha DMP11 was used as
a submixer for external synthesizers, and I used a Tascam TM-D1000 for mixing
vocal, guitar and harmonica performances before sending them to the Delta
66. The Tascam mixer provides S/PDIF digital output, so I routed its feed to the
digital ports of the Delta card.

My plan was to use Ardour to record an original song, with multiple
instrumental and vocal tracks, and mix it to recreate the sound of a small group
playing live. However, in this session the small group is only me, with some
imported WAV files and some multitracking in Ardour. I also planned to use a
few LADSPA plugins to add effects to some of the tracks and to use Ardour's

http://www.homerecording.com
http://www.prorec.com
https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f4.large.jpg

pan controls to position my tracks across the stereo audio panorama, as
players would be positioned on a stage.

I used a MIDI sequencer to create parts for piano, bass, guitar and drums. I
saved each part as a MIDI file and converted them all to WAV audio files with
the popular TiMidity MIDI utility. The drum track was converted to a stereo file,
the others were converted to monaural files and all the files were created in 16-
bit 44.1kHz WAV format. At that point they were ready for importing to Ardour.

When you open Ardour for the first time, you see an empty track display
complete with a kindly reminder that you need to create an Ardour session by
using the Session/New dialog. Session templates are available, but I knew my
immediate track needs and created a custom track layout—one stereo and four
mono tracks. I imported my WAV files into those tracks, and there was my
backing band.

Next, I recorded three more tracks in Ardour itself, adding a rhythm guitar part,
the vocal track and a harmonica solo. Recording in Ardour is simple: click on the
R button in your selected track to arm it for recording and then set your inputs
and levels in the track's mixer strip. Next, click on the main display's big red
Record button, click on the transport play control and record at will. You can
monitor some or all other tracks, muting and soloing tracks and groups of
tracks in real time for testing different ensembles.

When I was happy with the recorded performances, I started working on the
mix. Many aspects of the raw mix were in need of attention: the rhythm guitar
track needed a volume fade-out at the end and equalization (EQ) throughout,
the MIDI instruments weren't bright enough in the mix and everything needed
to be normalized and balanced. Fortunately, Ardour handled these tasks with
the greatest of ease. I used LADSPA plugins for equalization and amplification,
and I employed Ardour's own internal normalization routine when it was
needed. I also added reverb to the vocal and harmonica parts, again by using a
LADSPA plugin.

Adding the fade-out to my rhythm guitar track proved to be an interesting task.
First, I clicked on the track's automation button to set the automation curve
display, and then with the mouse on the Gain mode button I could draw the
amplitude curve. Then, I discovered that I could use Ardour's control
automation in the mixer as well. I set the automation state to write, and then I
played the section to be faded out and reduced the fader level. Ardour
recorded my adjustments to the fader, I reset the automation status to play,
and the fader moved downward automatically on playback. By the way, faders
can be ganged together as a mix group for simultaneous operation, including
the recording of simultaneous automation curves.

Normalization and Equalization

Normalization is a process that increases the peak amplitude of a signal to the
maximum level before clipping. All other amplitudes are then raised in their
original proportions to the new peak amplitude. Equalization boosts or cuts the
strength of a specified frequency or range of frequencies. The graphic equalizer
found in a car stereo system is a common example of one kind of EQ device
called a shelving equalizer. It divides the audible spectrum into more or less
narrow bands and provides a control for boosting or weakening the strength of
the frequencies within each band.

So how did all this creative activity turn out? You can hear the results for
yourself; see Resources for the URL.

Bear in mind that the recording has not yet been mastered, and I still can
return to my original session and make other changes. Feel free to suggest
improvements, but try to be kind about my modest efforts.

 Synchronization

Paul Davis also is responsible for creating the JACK low-latency audio server
and transport control interface, so you would expect Ardour's JACK
synchronization capabilities to be well evolved. I tested the Hydrogen drum
machine and the Rosegarden sequencer running in JACK master and slave
modes and experienced mixed levels of success. Both programs were synced to
and from Ardour by way of JACK without trouble. Hydrogen got along nicely
with Ardour, but I had problems recording the output of softsynths driven by
Rosegarden. The Rosegarden team is aware of this issue and intends to resolve
it, but you should check the Rosegarden Web site for the latest news.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f5.large.jpg

Figure 5. The Options Window

At the time of these tests, Ardour's support for MTC send/receive was under
heavy revision, so I was unable to complete any meaningful tests. However,
MTC support is a major item on many Ardour users' wishlists, and the
remaining bugs should be worked out before version 1.0 is released. Other
means of synchronization may be supported in future versions of Ardour.
Direct SMPTE reading, MIDI clock and SPP (song position pointer) have been
suggested as likely candidates, but work on those protocols will have to wait
until after the Ardour 1.0 release.

 Impressions

As I learn more about Ardour, there seems to be even more to learn. It's a
credit to Ardour's designers that the initial interface view is clear and
uncluttered, using pull-down and pop-up menus to reveal many underlying
features. Also, many helpful keyboard bindings exist, but you need to run
ardour -b at the command prompt in an xterm to discover them.

After gaining more confidence with Ardour's basic features, I started to explore
more of its capabilities. The TM-D1000 sends MIDI messages and controller
streams for most of its actions, and Ardour's controls can be bound to external
MIDI control surfaces. Ctrl-middle-click on a button or fader and then activate
the controller to set the binding. This feature is very cool, allowing any
hardware device that sends MIDI controller streams to act as a control surface

https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7796f5.large.jpg

for Ardour. Incidentally, group definitions still are in effect, so you can control
multiple faders in Ardour from a single external fader.

The TM-D1000 also transmits and responds to MIDI machine control (MMC)
commands, a valuable feature because Ardour can control and be controlled
from such a device. MMC messages include typical transport control actions
such as start/stop, fast-forward and rewind. Thus, a MIDI-sensible mixer such
as the TM-D1000 can function as a hardware control surface for almost all of
Ardour's operations.

In an article of this length I could test only the features most relevant to my
goals. I have not worked yet with Ardour's looping mechanisms, MTC still was
stabilizing as I completed this article, I didn't check out the timestretch
capability and so on. As I said, Ardour is a deep application, and there are many
useful and interesting features not touched on in this article's use of the
program.

 The Future

Development activity around Ardour is intense, especially as the program
closes in on its 1.0 release. Many people are interested in a viable alternative to
the proprietary lock-in solutions available for other operating systems, and
Ardour appears to moving along the right development path. Much work
remains to be done, including improved MIDI capabilities, video track support,
expanded synchronization possibilities and a GUI overhaul (GTK2 support is
planned). However, Ardour currently is in a feature-freeze, with bug fixes and
stability being the first order of the day before version 1.0 is released.

As might be expected in a pre-1.0 beta release of a large-scale complex project,
it is not quite bug-free. Ardour's Mantis bug-tracking and feature-request
system provides an excellent way to check on the status of known problems,
report new ones and make suggestions for future releases.

VST plugin support currently is problematic, due mainly to continuing changes
in WINE and Linux kernel development, but it is a high-priority item for the
developers. Many users have expressed their willingness to switch platforms
for their audio work if VST/VSTi support becomes seamless under Linux.

VST/VSTi Plugins

VST/VSTi audio plugins are a staple item in the sound software world. The VST
API was created by the Steinberg company, makers of the popular Cubase
audio/MIDI sequencer, and has been adopted by developers and embraced by
users worldwide. Properly speaking, a VST plugin typically is an audio or MIDI
processor, and a VSTi plugin is an instrument such as a synthesizer or drum

machine. Thousands of VST/VSTi plugins exist today, ranging from the
homemade to the costly and commercial. Many free-of-charge VST plugins are
quite good, and some VST authors have released their plugins as truly free
open-source software licensed under the GPL.

Ardour's documentation is another lively issue, because currently there is no
official users' manual. It is likely that Paul Davis will continue to make Ardour
freely available while charging a fee for a high-quality manual. Meanwhile,
users unfamiliar with the basic design concepts of a hard-disk recorder are
advised to retrieve and study manuals for proprietary DAWs, such as Pro Tools
or Cubase. Some Ardour-specific documentation can be found in the source
package text files and in various on-line resources, such as the Quick Toots
series (see Resources), and in the traffic on the ardour-users and ardour-dev
mail lists. Developers and testers also communicate on the #ardour IRC
channel, while normal users carry on considerable discussion of Ardour-related
matters on the mail lists for AGNULA/Demudi, Planet CCRMA, ALSA and the
Linux Audio Users group.

Is Ardour ready for the big time? Perhaps not quite yet, but its road map is
clearly headed there, and the remaining trip won't take long. I believe that it will
be only a short time before Ardour starts raising eyebrows in the mainstream
commercial audio software world. Ardour already has been used to record and
mix entire CD projects, and more users are reporting success with Ardour in
their own recording projects. I expect to be making a lot more music with
Ardour. Feel free to stop by my site and check the occasional results.

 Acknowledgements

The author sends vast thanks and appreciation to Paul Davis, Taybin Rutkin,
Jesse Chappell, Steve Harris and all the other members of the Ardour
development crew. Their work on Ardour, and so many other valuable Linux
audio projects, truly is innovative and indeed a labor of love. The free musicians
of the world salute you!

Major thanks also go to the members of the Ardour users mail list, especially
Jan Depner, Mark Knecht, Aaron Trumm and Josh Karnes. Developers and users
all were helpful as I found my bearings in some of Ardour's trickier places,
proving that good company does indeed lessen the difficulties.

Resources for this article: www.linuxjournal.com/article/7969.

Dave Phillips is a musician, teacher and writer living in Findlay, Ohio. He has
been an active member of the Linux Audio community since his first contact
with Linux in 1995. He is the author of The Book of Linux Music & Sound, as
well as numerous articles in Linux Journal.

http://www.linuxjournal.com/article/7969

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Centralized Authorization Using a Directory Service, Part

II

Alf Wachsmann

Issue #131, March 2005

Get a handle on administering who can log in where, with a proven, reliable
centralized directory.

Authorization is the process of deciding if entity X is allowed to have access to
resource Y. Determining the identity of X is the job of the authentication
process. One task of authorization in computer networks is to define and
determine which user has access to which computers in the network. A simple
example would be one line in a computer's /etc/passwd file, joe:X:
1234:56:/home/joe:/bin/bash, to allow user joe access to this
computer. If you want to give user joe access to several computers, you have to
add this line to every computer's /etc/passwd file.

On Linux, the tendency exists to create a local account for each single user who
should be allowed to log in to a computer. This typically is the case, because a
user needs not only login privileges but also access to additional resources,
such as a home directory to do some work. Creating a local account on every
computer takes care of all this.

The problem with this local account approach is that these accounts can be
inconsistent with one another. The same user name could have a different user
ID and/or group ID on different computers. Even more problematic is when two
different accounts share the same user ID and group ID on different
computers. User joe on computer1 could have user ID 1234 and group ID 56,
and user jane on computer2 could have the same user ID 1234 and group ID
56. This is a big security risk in cases where shared resources are used. These
two different accounts are the same for an NFS server, so these users can wipe
out each other's files.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The solution to this inconsistency problem is to have only one central,
authoritative data source for this kind of information and a means of providing
all your computers with access to this central source. This is what a directory
service does. The two directory services most widely used for centralizing
authorization data are the network information service (NIS, formerly known as
yellow pages or YP) and lightweight directory access protocol (LDAP).

 NIS vs. LDAP

A few things need to be considered when it comes to deciding which directory
service to use, NIS or LDAP. If your company already maintains an LDAP server,
it seems simple enough to add the authorization data to it. However, usually
company LDAP servers are used for white pages and similar fairly lightweight
tasks. Adding the authorization task puts a significant load on an LDAP server,
because every single lookup for user name, UID, GID and so on done by
programs needs to be answered by it. It usually makes sense to add an
additional LDAP server dedicated solely to authorization. Also, due to the many
different kinds of directory queries, it is rather hard to get the performance
tuning right. You need to add all necessary LDAP index definitions in your
slapd.conf file in order to speed up common lookups, but you don't want to
add too many index definitions. Doing so makes the LDAP back-end database
files large, and everything slows down again.

LDAP is the better choice in networks that have problems with many dropped
UDP packets, because it uses TCP/IP where retransmits are built into the
network protocol layer. NIS, on the other hand, uses remote procedure calls
(RPCs) over UDP. Every dropped packet results in a non-answered NIS query,
and the NIS client needs to repeat the query. Use the command netstat -s
-u at different times on different machines on your network to see whether
your network suffers from this problem. You should see very few errors
reported by this command.

I concentrate on NIS in this article, because it is easier to start out with and
there is a fairly simple migration path to LDAP in case you see problems. PADL
Software Pty, Ltd., provides a set of open-source tools to help you convert all
your NIS data files to LDAP (see the on-line Resources). You still have to do the
performance-tuning part, however. You have to write migration tools yourself if
you want to migrate from LDAP to NIS.

 Configuring the NIS Servers

An NIS server does not require a lot of hardware resources. Any machine you
have around should do the job. You might want to put this new functionality on
a dedicated machine, though. At the Stanford Linear Accelerator Center (SLAC),
we serve, without any problems, up to 500 Linux and Solaris clients with one

old Sun Netra T1 server. We have four of these NIS servers for about 700
Solaris and Linux desktop computers and another six NIS servers for about
2,500 Solaris and Linux compute servers. Our clients are spread out somewhat
unevenly over the servers.

 Master Server Configuration

Log on to the machine where you want to install your master NIS server, and
make sure the latest portmap, ypserv and yp-tools RPMs are installed. If not,
download and install them now. All following commands have to be issued as
root. Start the portmapper dæmon with:

service portmap start

The next step is to define the name of your new NIS domain. This name can be
anything you like, but it probably makes sense to pick one that represents your
department inside your company; nis.example.com for an NIS domain for all of
Example.Com or eng.example.com for the Engineering department inside of
Example.Com would be good choices.

Set the NIS domain name on your master server with the command:

domainname nis.example.com

You also have to add the line:

NISDOMAIN=nis.example.com

to the file /etc/sysconfig/network.

Restrict access to your new NIS server by creating a file /var/yp/securenets with
the content:

netmask # network
255.255.255.0 192.168.0.0

This is a crucial security step. The world is able to query your NIS server if you
don't have this file.

The next step is to define the things you would like to put into NIS. For the
purpose of authorization, the /etc/group and /etc/passwd files as well as
something called netgroup are sufficient. However, many more things are
possible. To get an idea, have a look at the file /var/yp/Makefile on your NIS
server.

Below, I show how the three files I've mentioned are configured to be
distributed by way of NIS.

Adjust the Makefile generating the NIS map database files:

cp /var/yp/Makefile /var/yp/Makefile.save
vi /var/yp/Makefile

Change the following two entries from true to false to prevent the merging of
passwd and shadow files as well as group and gshadow files:

MERGE_PASSWD=false
MERGE_GROUP=false

Change the directory name where NIS should look for its data sources:

YPSRCDIR = /etc/NIS
YPPWDDIR = /etc/NIS

Comment all files from which the NIS databases should not be built. I left only
these three files:

GROUP = $(YPPWDDIR)/group
PASSWD = $(YPPWDDIR)/passwd
NETGROUP = $(YPSRCDIR)/netgroup

Comment the line starting with all: that contains the list of all potential NIS
maps. Add the new line:

all: passwd group netgroup

Watch out for TAB characters. In a Makefile, you must use only TAB characters,
not spaces, to indent commands.

Now, create the data source directory defined in the Makefile:

mkdir /etc/NIS/
chmod 700 /etc/NIS

and put a passwd file in there:

grep -v '^root' /etc/passwd > /etc/NIS/passwd

You should remove not only the root account but all system accounts from this
file and leave only the real user accounts.

If you still are using /etc/passwd with encrypted passwords, it now is time to
convert them to Kerberos 5, as described in the previous article [LJ, February

2005]. If you don't do this, your encrypted passwords are exposed on the
network when the passwd file is distributed to the slave NIS servers or to the
NIS clients.

Now, collect the local /etc/passwd files from all the machines that are to be
members of your new NIS domain. Remove all system accounts and then
merge them together with:

% cat passwd_1 passwd_2 passwd_3 ... > passwd_merge

Remove all duplicate entries with this command:

% sort passwd_merge | uniq > passwd_uniq

Check the consistency of the remaining entries with:

% cut -d':' -f1 passwd_uniq | sort | uniq -c | \
egrep -v "\s*1"

If this produces any output, you have two different entries with the same
account name. If the difference is not in the UID or GID field, simply decide on
one of the entries and remove the other one. If the difference is the UID or GID
field, you need to resolve this conflict, which can be rather complex.

Another consistency check is to see whether any two different accounts have
the same UID, which is the case if this command:

% cut -d':' -f3 passwd_uniq | sort | uniq -c | \
egrep -v "\s*1"

produces any output; the second number in the output is the duplicate UID.
Resolving this conflict again can be rather complex. Do the same kind of
merging and checking for all your /etc/group files.

Copy the resulting files to /etc/NIS/passwd and /etc/NIS/group. I will return to
the netgroup file later. Leave it out for now.

Now, start your master NIS server with:

service ypserv start

Initialize the NIS maps with the command:

/usr/lib/yp/ypinit -m

and follow the printed instructions.

In order to have all the NIS maps available to your NIS master server, you
probably want to set up this machine as an NIS client as well. Make sure this
NIS client can bind only to the NIS master as server in order to prevent circular
dependencies when booting all your machines, as after a power outage.

 Slave Server Configuration

NIS slave servers are NIS clients that redistribute the maps they receive from
the NIS master server to other NIS clients. Make sure the newest portmap,
ypserv, ypbind and yp-tools RPMs are installed on all your slave server
machines. The first step in configuring an NIS slave server is to configure it as
an NIS client. See the next section for how to do this.

Once the NIS client is configured, start it with:

service ypbind start

On your NIS master server, add the name of the new NIS slave server to the file
/var/yp/ypservers and run the following commands:

cd /var/yp
/usr/lib/yp/makedbm ypservers
/var/yp/nis.example.com/ypservers

You also need to change the definition of NOPUSH in the file /etc/YP/Makefile
on your NIS master server from true to false in order to get updated NIS maps
pushed from your master server to your slave server(s).

Back on your new NIS slave server, initialize the slave server with:

/usr/lib/yp/ypinit -s nismaster

where nismaster is the name of your NIS master server. This needs to be the
fully qualified domain name (FQDN) if your DNS returns the FQDN for a name
lookup. Copy the file /var/yp/securenets from your NIS master server over to
the new slave server, and start the new NIS slave server with:

service ypserv start

Remember to update your disaster recovery plan to reflect the new
dependency of your NIS slave server on your NIS master server.

 Client Configuration

Install the latest ypbind, yp-tools and portmap RPMs on all your clients. Edit the
file /etc/yp.conf to tell the client about your NIS server:

ypserver nismaster.example.com

Add a line for each of your slave servers as well, if you have some. Use a
random order for these servers on your clients to get somewhat even load
balancing over all available servers.

Add a line to /etc/sysconfig/network to define the NIS domain of the client:

NISDOMAIN=nis.example.com

and set the NIS domainname with the command:

domainname nis.example.com

Start the portmapper with:

service portmap start

and the NIS client with:

service ypbind start

on each client.

The command ypwhich should now output the NIS server to which this client
has bound.

Use the ypcat command to check the content of your NIS maps. For example:

% ypcat passwd

Next, you have to tell all lookups on your client to use NIS. This is done in the
name service switch configuration file /etc/nsswitch.conf(5). Change the
passwd, group and netgroup entries to:

passwd: compat
group: files nis
netgroup: nis

This defines the search order for group lookups: start with the local /etc/group
file and then try an NIS lookup. Netgroups come only from NIS. I return to the
compat entry for passwd later.

The name service caching dæmon nscd(8) sometimes has problems updating
its internal cache. The effect is that changes in an NIS map are not visible on a
particular client. Restarting nscd on that machine is the only solution to this
problem.

 Typical Usages

Two commands you should be familiar with to query information from NIS are
ypcat(1) and ypmatch(1). ypcat prints values of all keys in an NIS map. The
command ypcat passwd prints all entries in your NIS passwd map.
ypmatch prints the values of one or more keys from an NIS map; ypmatch
jane passwd outputs the passwd entry for account jane.

 NIS Group Map

A typical use of the NIS group map is to allow file sharing between multiple
users. This works with local files as well as with files in NFS. Here is how to set it
up. Let's say you have two users (this technique works for any number of users)
with the following passwd map entries:

jane:*:1234:42:Jane:/home/jane:/bin/bash
joe:*:5678:57:Joe:/home/joe:/bin/bash

This defines the primary group IDs for jane to be 42 and for joe to be 57.

With the NIS group map you can add additional, secondary group memberships
for accounts. The group entry:

projectX:*:127:jane,joe

defines a new group projectX with no password (*), group ID 127 and two
members. No comments are allowed in the group file.

If you now set up a directory with read/write/execute permissions for group
projectX:

mkdir /projects/X/
chgrp projectX /projects/X/
chmod g+wrx /projects/X/

every member in the projectX group has permission to read/write/execute files
inside that file space. The user might need to do a newgrp projectX first.

Whenever you need to add or remove accounts to or from the group map, do it
on your NIS master server by editing the /etc/NIS/group file and executing the
commands:

% cd /var/yp
% sudo make group

These generate a new group map that makes the changes visible
instantaneously on all clients. There is no need to touch any client to make
these changes. Everything now is centralized in one place on your NIS master
server.

 NIS Netgroups

Netgroups are very different from groups. Netgroups come in two flavors, user
netgroups and host netgroups. Both types of netgroups can contain netgroups
as members, so netgroup definitions can be hierarchical. Both types of
netgroups are defined in the same netgroup file. Comments are allowed in the
netgroup file.

Host netgroup definitions in /etc/NIS/netgroup look like this:

Group of project groups:
projects \
 projectA \
 projectB \
 projectX

Group of hosts for Project X
projectX \
 (host1.example.com,-,) \
 (host2.example.com,-,) \
 (host3.example.com,-,)

These host netgroup definitions now allow you to, for example, export NFS
space only to subsets of your machines. In your NFS server's /etc/exports file,
you can use constructs like these:

export the /projects directory to all machines
in the "projects" netgroup
/projects @projects(rw,root_squash)

export Project X' space only to machines
in the "projectX" netgroup
/projects/X @projectX(rw,root_squash)

Again, adding or removing hosts or adding/deleting netgroups is a simple edit
of the /etc/NIS/netgroup file on your NIS master server. Execute cd /var/

yp; sudo make netgroup to update the NIS map, and the changes are
visible everywhere instantly.

 User Netgroups

User netgroups, which are netgroups with accounts as members, typically are
used to restrict login to computers. User netgroup definitions look slightly
different from host netgroup definitions:

Group of project user groups
u-projects \
 u-projectA \
 u-projectB \
 u-projectX

Group of users in Project X
u-projectX \
 (-,jane,) \
 (-,joe,) \
 (-,nick,)

The prefix u- in the names is a convention to distinguish user netgroups from
host netgroups.

With these definitions in place, you now can grant or restrict login access to
your computers with these kinds of entries in a machine's local /etc/passwd file.
Remove a + at the very end of the passwd files if present:

• Allow access for all accounts in the u-projects netgroup and no one else:
+@u-projects

• Allow access for only the u-projectX netgroup members and no one else:
+@u-projectX

• Allow access to everybody in u-projects but not in u-projectX:
-@u-projectX
+@u-projects

Order here is important. The first match determines what happens.
• Allow everybody in u-projectA and also account nick

+@u-projectA
+nick

The information about nick (home directory, login shell and so on) comes out of
the NIS passwd map. It is better to avoid putting explicit account names in here,
because management of these entries is not centralized.

To make this +/- syntax work, your clients need to have the entry

passwd: compat

in their /etc/nsswitch.conf files.

 Conclusion

Once you are over the initial hurdle of installing an NIS server and making your
authorization data consistent, you can start enjoying the centralization.
Netgroups allow for complex and fine-grained access control from one central
place.

Resources for this article: www.linuxjournal.com/article/7967.

Alf Wachsmann, PhD, has been at the Stanford Linear Accelerator Center (SLAC)
since 1999. He is responsible for all areas of automated Linux installation,
including farm nodes, servers and desktops. His work focuses on AFS support,
migration to Kerberos 5, a user registry project and user consultants.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7967
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Event-Driven Programming with Twisted and Python

Ken Kinder

Issue #131, March 2005

Before you turn your server app into a thundering herd of processes or a
hairball of threads, consider this clean, logical event-driven way to do it.
Download the 600-line proxy server example and follow along.

In the beginning, there were forking servers and then came threaded servers.
Although they manage a few concurrent connections well, when network
sessions reach into the hundreds or even thousands, forking and threading
servers spawn too many separate, resource-consuming processes to be
efficient. Today, there is a better way, asynchronous servers. A new breed of
frameworks for third-generation languages is taming the once complex world
of event-driven programming.

A rising star in the Python community has been Twisted, which makes
asynchronous programming simple and elegant while providing a massive
library of event-driven utility classes. In this article, I discuss asynchronous
event-driven programming and how it's done in Twisted. Because reading
about code only gets you so far, I cite examples from a real Twisted application
developed for this article: a simple proxy server that blocks unwanted cookies,
images and connections. Instructions on how to get the complete source code
are in the on-line Resources.

 What Is Twisted?

The Twisted Project has been gaining popularity as a powerful and increasingly
stable way of implementing networked applications. At its core, Twisted is an
asynchronous networking framework. But unlike other such frameworks,
Twisted boasts a rich set of integrated libraries for handling common protocols
and programming tasks, such as user authentication and even remote object
brokering. One of the philosophies behind Twisted is breaking down traditional
separations among toolkits, as the same server that serves Web content could
resolve DNS lookups. Although the package itself is quite large, applications

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

need not import all the components of Twisted, so run-time overhead is kept to
a minimum.

As with Python, Twisted's user base has been expanding from its academic
roots to the commercial and government sectors. At Zoto, we're using Twisted
in a distributed photo storage and management application, because it enables
us to develop scalable network software quickly in a famously productive
language, Python. Programming day to day, I appreciate Twisted for its
impressive toolkit and supportive community. And as with all community-
oriented open-source projects, Twisted is a safe business bet, because its
existence doesn't hinge on the continued support of any single company or
institution.

 What Is Asynchronous Programming?

Have you ever been standing in the express lane of a grocery store, buying a
single bottle of water, only to have the customer in front of you challenge the
price of an item, causing you and everyone behind you to wait five minutes for
the price to be verified? Plenty of explanations of asynchronous programming
exist, but I think the best way to understand its benefits is to wait in line with an
idle cashier. If the cashier were asynchronous, he or she would put the person
in front of you on hold and conduct your transaction while waiting for the price
check. Unfortunately, cashiers are seldom asynchronous. In the world of
software, however, event-driven servers make the best use of available
resources, because there are no threads holding up valuable memory waiting
for traffic on a socket. Following the grocery store metaphor, a threaded server
solves the problem of long lines by adding more cashiers, while an
asynchronous model lets each cashier help more than one customer at a time.

This isn't to say there aren't benefits to a threaded model. For instance, with
microthreads, the amount of resources used by any particular thread is
reduced substantially. There's an inherent complexity in asynchronous
programming, especially when you need to do many blocking operations in
succession. In Python, however, the benefits of threading are diminished by
Python's Global Interpreter Lock (GIL). Threaded programming in Python is
refreshingly simple, because all internal Python operations are thread-safe. To
add an item to a list or set a dictionary key, no locks are required, so as to avoid
race conditions among threads. Unfortunately, this is implemented through an
interpreter-wide lock that Python's interpreter uses liberally. So, although two
threads safely can append to the same list at the same time, if they're
appending to two different lists, the same lock is used. Because threaded
Python applications suffer a resulting performance hit, asynchronous single-
thread programming is all the more desirable for a language such as Python.

 Accepting Connections and Sending Responses

Let's start with a simple example of a server that accepts connections on port
1100. For each connection, it sends the UNIX time and closes the socket.

Listing 1. This simple Twisted server sends the time and then closes the socket.

import time
from twisted.internet import protocol, reactor

class TimeProtocol(protocol.Protocol):
 def connectionMade(self):
 self.transport.write(
 'Hello. The time is %s' % time.time())
 self.transport.loseConnection()

class TimeFactory(protocol.ServerFactory):
 protocol = TimeProtocol

reactor.listenTCP(1100, TimeFactory())
reactor.run()

Addressing the complexity of handling multiple sessions with one thread is at
the core of a framework such as Twisted. Network sessions are represented by
subclasses of the twisted.internet.protocol.Protocol class, such that each
Protocol instance represents a network session. These objects are spawned by
Factory objects, which inherit from twisted.internet.protocol.Factory. A
singleton, twisted.internet.reactor, handles the dirty work of polling sockets and
invoking events. Calling reactor.run() in Twisted simply starts the event loop,
and run() exits when the application finishes, the same as an event loop in GTK
or Qt.

 The Proxy Server Example

Our proxy server has two kinds of networked chat sessions: incoming HTTP
requests and their respective outgoing proxies. Because HTTP is a chat-like
protocol, we can inherit our protocol class from Twisted's LineReceiver, which
subclasses Protocol while providing extra functionality useful for chat sessions,
such as HTTP. Twisted actually includes classes specifically for making and
handling HTTP requests. We are writing our own in part because Twisted's
prefab classes don't facilitate proxy serving and also because it's a good
programming exercise for this article.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7871f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7871f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7871f1.large.jpg

Figure 1. Class diagram for a proxy server. The Protocol classes handle individual connections
while the Factory classes create them.

Refer to Figure 1 for the class structure we are going to use. Instances of the
Factory classes are used by Twisted to spawn off Protocol instances for each
connection made. We create one SimpleHTTP class and inherit from it classes
for managing incoming and outgoing traffic. Because HTTP is mostly the same
for client and server, we can manage most of the lexical processing in one
superclass and let subclasses do the rest, which is exactly how Twisted's own
HTTP classes work.

 Handling Callbacks

Operations you'd otherwise do with one or two methods tend to require
several callback methods in event-driven programming. The rule of thumb is,
any time there's a blocking operation you need to wait on, it happens outside
your code and, therefore, between two of your methods. In the case of our
proxy server, we can break down into separate chunks each part of handling a
request. Most of what a proxy server does amounts to reading in data from a
browser, making a few changes to that data and sending the modified data to
the remote Web server. As of HTTP/1.1, multiple Web hits can be handled over
one network connection. In Figure 2, you can see what happens to each
request, keeping in mind that multiple requests can be made per HTTP
connection. Arrows connecting boxes show which events are spawned and in
what order.

Figure 2. Overall Steps in Processing Proxy Hits

In a blocking program, one might expect to handle opening a remote
connection and sending it a line of text like this:

connection = socket.open(remote_server, remote_port)
connection.write(get_string)
response = connection.readline()

We've all seen this kind of blocking code before, so what is different about the
Twisted way? Because we don't want to wait around for the connection to be
made in an event-driven program, we simply schedule some code to run when
the remote server gets back to us. In Twisted, this kind of deferment is handled
by using an instance of the twisted.internet.defer.Deferred class as a
placeholder for the result you would expect from a blocking operation. For
example, in our proxy server, we accept a Deferred object when we initiate a
remote connection (Listing 2).

Listing 2. Deferring operations in Twisted are like putting them on hold until a

blocking operation gets back to us.

d = self.outgoing_proxy_cache.getOutgoing(
 host, int(port))
d.addCallback(self.outgoingConnectionMade, uri)
d.addErrback(self.outgoingProxyError, uri)

The self.outgoing_proxy_cache.getOutgoing method initiates an outbound
proxy connection. It doesn't wait, however, for the connection to be made to
return to the caller; it returns immediately. The behavior of all methods to
return as soon as possible is what makes a single-threaded server possible. Any
and all CPU time taken by a method is spent processing, not waiting for
external things to happen.

Notice how as a replacement for the connection object itself, a Deferred object
is returned. By calling addCallback and addErrback on the Deferred object, we
are scheduling future events to be fired, such that when an outbound
connection is ready, the self.outgoingConnectionMade method is called. By
passing uri as a second argument to addCallback, we are telling Twisted that
self.outgoingConnectionMade also should be called, with uri as an additional
argument.

 Handling Errors

In the event of an error, self.outgoingProxyError is called with a Failure object,
which brings us to error handling. Python's traditional error handling is done
through exceptions, a concept familiar to other high-level languages, such as
Java (Listing 3).

Listing 3. Traditional Error Handling in Python

try:
 (offending code)
except ValueError:
 (error handling code)
except MyError:
 (error handling code)

Although Python's model of exception handling works exceptionally well (pun
intended) for synchronous designs, it does not take into account asynchronous
design. For example, when we initiate an outbound HTTP connection, Twisted
continues processing other events while the connection is made. But, we want
to specify behavior to address any problems that may occur at the time we
request the connection. Fortunately, the good people making Twisted took this
into account. Just as code is scheduled to run when a blocking operation
completes successfully, it also can be scheduled to run in case of an error.

Twisted also handles all exceptions raised within the event loop, with hooks for
developers to manage and log exceptions. This has an added benefit too:
although an exception might abort a specific event from completing, it does not
bring down the server, even if you haven't put any exception-handling code in
place.

 Twisted Classes and Event Handling

When using some of the Twisted classes, such as the LineReceiver class we're
using, you can handle many events simply by adding methods with the correct
names to your classes. Each time the protocol receives a line, the lineReceived
method is invoked with the text of the line as an argument. Our SimpleHTTP
class, which is intended to do minimal processing of an HTTP session, has
methods such as these:

• startNewRequest: invoked at the beginning of each request.
• lineReceived: designed to facilitate chat-oriented protocols. Each time a

line of text comes over the socket, this method automatically is called.
• rawDataReceived: when sending a binary file or raw streams of data, it

isn't reasonable to process information separated by newline characters.
To account for this, LineReceiver lets us switch to raw mode transfer, in
which case rawDataReceived is called instead of lineReceived.

• handleFirstLine: HTTP works by starting each request with a single line.
Generally, the client is sending a GET or POST request with a URI, and the
server responds with a status code. handleFirstLine is used to handle
either of these cases.

• handleHeadersFinished: invoked when HTTP headers are sent fully.
• handleRequestFinished: invoked when the HTTP request itself has

completed.

Writing separate methods for states or actions that occur in the processing of a
protocol is how Twisted programmers queue up events. At the beginning of a
request, we can specify events to occur at each stage of handling a request. In
our earlier example, we decided to call self.outgoingConnectionMade once a
connection has been made. Let's take a look at that method, as shown in Listing
4.

Listing 4. Scheduling Events in Twisted

def outgoingConnectionMade(self, outgoing_proxy,
 uri):
 """
 This occurs when our outbound proxy has
 connected. It's a Twisted callback method.
 """
 assert(outgoing_proxy, OutgoingProxy)

 self.outgoing_proxy = outgoing_proxy
 outgoing_proxy.incoming_proxy = self

 # Send HTTP command and echo back result
 outgoing_proxy.write('%s %s %s' % \
 (self.http_command,
 uri,
 self.http_version) \
 + self.delimiter)

 outgoing_proxy.firstline_sent_def.addCallback(
 self.outgoingFirstlineReceived)

 # Send anything we have queued.
 self.flushOutgoingBuffer()

 # Add callbacks for when headers are ready
 outgoing_proxy.headers_finished_def.addCallback(
 self.outgoingHeadersReceived)
 outgoing_proxy.request_finished_def.addCallback(
 self.handleOutgoingRequestFinished)

Notice that outgoing_proxy represents the connection we are making to a
remote server, on behalf of the Web browser we are serving. We're sending the
HTTP request by calling outgoing_proxy.write. We're also scheduling the
self.outgoingFirstlineReceived method to be called when a response is received
from the remote server. The self.outgoingHeadersReceived method is called
when the remote server has sent back all of its HTTP headers. Finally,
self.handleOutgoingRequestFinished is called when the remote server has
finished entirely responding to our outgoing HTTP request.

Although the outgoingConnectionMade method returns before any of this
happens, we're lining up events to happen in the future. It well may be that
while waiting for a response on one connection, ten other requests are opened
and closed—all in the same thread. All information relevant to a connection is
stored as instance data on protocol classes. Factories spawn protocol instances,
protocol instances keep session states and deferred objects bind future data to
event handlers. Completing the puzzle, the reactor manages the dirty work of
polling sockets. This is the combination of tools upon which Twisted is built.

 Wrap-Up

You can download for tinkering all 606 lines of the proxy server discussed in
this article. Although I wouldn't put the company intranet behind it, I've been
using it for a week now to filter out unwanted cookies and images and even to
block access to a certain vendor from my desktop. When I started using
Twisted, it was easy to wrap my head around the concept of asynchronous
programming, a little harder to figure out how to map events to the flow I
wanted and harder still to explain it to someone else. Do not be discouraged,
however. Although we at Zoto started with almost no Twisted knowledge, we've
built a fully functional and extremely scalable clustered application to store and
manage on-line photos in less than a year, with only one person (me) working
full-time on the server.

Of course, Twisted is not for everyone. Its vastness, although powerful, can be
intimidating. For a simple asynchronous chat server in Python, take a look at
Medusa. Like Twisted, Medusa organizes asynchronous programming into
Factories (called Dispatchers) and chatting classes.

Resources for this article: www.linuxjournal.com/article/7963.

Ken Kinder is currently developing a clustered Twisted server for Zoto in
Oklahoma City, Oklahoma. He enjoys hiking, skiing, photography and (of
course) Linux. His hometown is Boulder, Colorado.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7963
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Motion: Your Eye in the Sky for Computer Room

Surveillance

Phil Hollenback

Issue #131, March 2005

Your door might be nice, but do you really need 23 hours of video of it standing
closed? Use this software to process your security videos to include only the
key events, so you can catch entries and exits.

Let's say you have a room full of thousands of dollars' worth of computer
equipment. That's probably something you want to keep an eye on, right? With
that in mind, you install a network-connected camera. Now, you can surf over
to the camera's Web page and see what's going on in the server room at any
time of day or night. That's an improvement, but you quickly realize some sort
of recording facility is needed, in case you need to figure out who was in the
room last Tuesday. So, you start saving the video to another system on the
network for possible viewing at a later time. Maybe you write a few scripts to
rotate the video after a week or so to keep from filling up your hard drive.

After wading through hours of video to find out who “borrowed” your favorite
screwdriver, you realize further refinements are necessary. Wouldn't it be great
if the computer could keep only the interesting video and throw out everything
else? Enter Motion, a free motion-detection program. Process your video
through it, and 24 hours of daily video becomes 15 minutes of video clips
documenting every time something moved in that room—technology to the
rescue.

 The Hardware

Motion works with either standalone netcams, such as those offered by Axis
(see the on-line Resources), or any camera connected to a video4linux-
compatible video capture card. I concentrate here on using a standalone
camera, the Axis 2100, because it's simpler to set up. In any case, you need a
Linux system to save the video and to run Motion as well. Motion can require

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

quite a bit of processing power, but a system with a Pentium III CPU or higher
should work okay if the machine is dedicated to running only Motion.

Installation and configuration of the Axis camera is straightforward. Pick a
location for it in the room you want to monitor, and run power and Ethernet
cables. In my experience, a camera mounted slightly above eye level, seven feet
up or so, in a corner of the room provides the best coverage. Follow the camera
install instructions to assign it an IP address on your network. Then, verify that
the camera works by pointing your Web browser at the camera's Web page.

The computer system that is going to save the video and run Motion can be
situated anywhere you like. It's probably best to keep it on the same logical and
physical network as the camera, for simplicity's sake.

 The Software

Any modern Linux distribution should work fine. I use Fedora Core 1 in my
setup.

Obtain Motion from the Motion Web site (see Resources). The current version
at the time of this writing is 3.1.16. You can use either the RPM supplied on the
Motion Web site or build from source. I don't recommend using RPMs or
Debian packages from elsewhere as they tend to be out of date and lacking
features. Numerous important changes have occurred in Motion development
in a few months' time.

The only other software dependency is the ffmpeg library, which Motion uses
to generate MPEG videos. You must use the released version 0.4.8 of ffmpeg, as
newer development versions do not work well with Motion. Download ffmpeg
source (see Resources); you must have ffmpeg built and installed before
building Motion. Otherwise, Motion attempts to use an older tool called
mpegplayer to create videos. You probably don't have that installed either, so
Motion won't work very well.

 Building the Software

After you have downloaded both Motion and ffmpeg, untar them in a directory
such as /tmp. Then, cd to the ffmpeg source directory and run:

$./configure
$ make
make install

The last command must be run as root.

These commands install the ffmpeg libraries under /usr/local/lib. Then, cd to
the Motion source directory and again run ./configure. This time, make
sure to check the results. In particular, under Configure Status, FFmpeg Support
must say Yes. If not, Motion didn't find the ffmpeg library on your system. This
is the number one cause of problems and confusion when installing Motion.
Don't continue until you resolve this problem. Figure out where on your system
the file libavcodec-0.4.8.so is located, and rerun configure in the Motion
directory as follows:

$./configure --with-ffmpeg=/some/random/path

Once you are able to run configure and see it report FFmpeg Support:
Yes, you can build and install motion:

$ make
make install

Again, the final command must be run as root. After all of this completes, you
will have a /usr/local/bin/motion executable on your system.

Refer to the Motion Guide (see Resources) if you encounter any problems
building or installing Motion. Some of the guide is outdated, but it contains a
useful explanation of how to install and operate Motion.

 Configuring Motion

Motion runs as a dæmon, constantly analyzing and storing video. It is
controlled by a configuration file, per the standard UNIX paradigm. Copy the file
motion-dist.conf from the source directory to /etc/motion.conf, and edit a few
parameters. The first thing you need to change is the netcam_url setting.
Motion retrieves JPEG images from the camera through this URL. For the Axis
2100 camera, this takes the form http://netcam.example.com/axis-cgi/jpg/
image.cgi?resolution=640x480. When you set the netcam_url variable in
motion.conf, all the settings pertaining to directly connected video cameras,
such as video device, rotate, height and width, are ignored.

You should be aware of one limitation between netcams and standard video
capture devices. Motion at this time knows how to request images from
netcams only one JPEG snapshot at a time. The overhead of this limits your
video to a maximum of 12–15 frames per second (fps). Some work has been
done to pull the images from the cameras in motion-jpeg streams, but that
effort is not yet complete. In practice, 10 or 12fps is perfectly adequate for
surveilling a room.

You need to decide where to keep your Motion-generated videos. I generally
use the directory /var/log/vcr on my Linux server. The location you use depends
on your disk-space situation. Ideally, you should create a new filesystem
exclusively for the Motion videos in order to avoid filling your root or /var
filesystem with video files. This directory is set with the variable target_dir in
motion.conf.

Next, decide on the type of video you want to create. Motion 3.1.16 supports
MPEG1, MPEG4 and MS-MPEG4. MPEG1 has the advantage of being a simple
and well supported format. However, MPEG4 offers better video and better
compression. The final format, MS-MPEG4, is understood by Microsoft
Windows Media Player without any special plugins.

One warning: MPEG4 and MS-MPEG4 support were introduced in Motion
3.1.16, so they have not been tested as extensively as MPEG1 video has been. I
have found MS-MPEG4 to work fine, however, and it is much easier for
Windows users to view. MPlayer or any other modern video player can be used
to watch video in any format on Linux systems.

The video type is controlled by the motion.conf variable ffmpeg_video_codec.

This should be enough basic configuration for you to start using Motion. You
should check that output_normal is off; otherwise, JPEG images of all the
frames are stored in target_dir. This may be useful later on for debugging, but
right now it is unnecessary clutter.

 Starting Motion

Run Motion from the command line, as root, with the command /usr/
local/bin/motion. Motion should start up and continue running. If it
aborts immediately, there probably is an error in your config file. Follow the
error messages to troubleshoot. Once you have it fixed so that Motion starts
and continues to run, generate some input. Walk in front of the camera or,
better yet, have an assistant do it. Remember to turn the lights on in your
server room, or the camera might not pick up much action.

As the activity in front of the camera starts, Motion begins to generate an
output file. After the activity stops, check your targer_dir for the resulting
output file. Examine the file with your video player. The video may appear jerky
because of the limitations of pulling the still images from the netcam. Motion
fills in the missing frames so that the video runs at normal speed, and it may
have the stop-motion quality you see on convenience store cameras. If
everything looks good, it's time to set up Motion to run on system startup.

To make Motion run on every system boot, set up an init script. On Red Hat-
based systems, copy motion.init from the Motion source directory to /etc/init.d/
motion and run, as root:

/sbin/chkconfig --add motion
/sbin/chkconfig motion on

Then, test that the initscript works by running it manually with /etc/init.d/
motion start. Finally, if you are paranoid, reboot the system and verify that
motion is up and running after system boot.

 Tweaking Your Configuration

Like any good Linux program, Motion has many tuning variable. The best advice
when you tune Motion is to change one variable, restart Motion and test. Some
of the configuration variables can have non-obvious interactions with one
another.

As a first step, you might want to turn on the locate and text_changes
motion.conf variables. Locate draws a box around the motion detected in each
frame, and text_changes prints the number of changed pixels in each image in
the corner of the image. These two settings allow you to determine where
Motion thinks the motion in the image is, and how much motion there is—how
many pixels have changed in the image.

Right off the bat, I recognized I probably placed my camera in the wrong spot in
my server room. The room has a window that looks into another office space. It
took me a while to figure out why I was getting so many tiny Motion movies
when the only change would be a slight brightening and dimming of the room. I
finally realized that occasionally a light-colored door in the other room would
open and reflect light through the window into my server room. Then, that light
would reflect off a shiny metal air-conditioning unit into the camera. So even
though the camera couldn't see the window at all, light bouncing through it
would produce occasional spurious results.

In retrospect, I should have mounted the camera to point away from possible
external light sources and away from shiny metal surfaces. However, I decided
to leave it where it was, because that really was the best view of what was going
on in the room. Instead of moving the camera, I adjusted Motion to
compensate.

The first thing I did was create a mask file. This simply is a black-and-white
image the same size as the camera output images, 640×480 for the Axis
camera. Any black areas are ignored by Motion. I created this file in The GIMP
and blacked out the area corresponding to the metal surfaces of the A/C unit.

Unfortunately, Motion is picky about this file; you must save it as a raw, not
ASCII, portable graymap (PGM) file.

Motion doesn't like PGM files because they are generated by The GIMP. If you
use one, Motion starts but then exits a few moments later with the message:

This is not a ppm file, starts with 'P6'

A few minutes of source code digging revealed the fix. Motion expects the PGM
file version number at the start of the file to be P5, not P6. Edit your mask file
and change the magic number at the start from P6 to P5. You can edit this file
safely in vi. After that change, Motion loads the mask file without incident.

This reduced, but did not eliminate, the empty motion capture videos. I then
moved on to other adjustments. I tried turning the light switch variable, which
the comments in motion.conf indicate might help filter out sudden light
changes. I found this to be ineffective. I also experimented with lowering the
threshold, the number of changed pixels required to trigger motion detection.
The text_changes output is useful for this as it prints the number of changed
pixels on each motion output frame. If too many bogus movies are output by
Motion, you can try to raise the threshold to a number higher than what's
printed by text_changes.

Ultimately, the best tweak I found was to increase motion_minimum_frames.
This is the number of frames that must contain motion before Motion starts
generating a movie. I set this variable to three and found that most of my
spurious movies from the light changing disappeared. Most of those movies
were only a few frames long, because the light level change happened quickly.
Conversely, real motion-capture events tended to be many frames long. Thus, if
you see many tiny movies with a duration of one second or so, my advice is to
increase motion_minimum_frames to at least three and possibly more.

 Future Improvements

One non-software tweak I have considered but not yet implemented is a
motion sensor for the light in my server room. This neatly solves the problem
of making sure there is enough light in the room when Motion records an
event. Something moves in the room, the lights come on and Motion records.
Motion-sensitive light switches can be found at hardware stores for around $15
and require only basic wiring skills.

For now, I simply let my storage area /var/log/vcr fill with movies and delete
them manually on occasion. It probably makes sense to set up an automated
mechanism to handle this. My current thinking is that movies should be deleted
after 30 days. Obviously, this depends on your particular needs.

Several experimental mjpeg support patches have appeared on the mailing list
recently. As I mentioned earlier, mjpeg means that Motion pulls a continuous
stream of images off the camera instead of requesting them one by one. This
should provide much smoother resulting videos, although current Motion
videos from netcams do have an enjoyable Keystone Kops feel to them.

Active development continues on Motion. The mailing list (see Resources) is an
excellent place to ask questions and find out about current development. Most
of what I've learned about Motion has come from reading the mailing-list
archives.

 Conclusion

Motion provides a solution for one of the most vexing problems we face in the
computer industry, too much data. What good is information such as video
imagery if there's more of it than you ever could watch? With a little bit of
image analysis, Motion quickly eliminates the boring, unchanging video you
don't care about. The results are more effective server room monitoring and
more time for you to work on other projects.

Resources for this article: www.linuxjournal.com/article/7966.

Phil Hollenback is a Linux system administrator at Telemetry Investments in
New York City. He spends his time skateboarding the streets of Manhattan
when he's not writing Perl scripts. Visit him at his Web site,
www.hollenback.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7966
http://www.hollenback.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 The Perl Debugger

Daniel Allen

Issue #131, March 2005

Sticking in extra print statements is one way to debug your Perl code, but a full-
featured debugger can give you more information.

Debugging is an annoying necessity in any language, whether it's debugging
your own code or somebody else's that you've been given to make work on
your system. Anything you can do to make debugging easier is a big win. Perl
includes a command-line debugger that can make your debugging job
considerably easier. This article covers the basics of the debugger and shows
off a few tricks you may find useful.

 Avoiding Bugs with Warnings and Strict

An astounding number of bugs can be caught by Perl automatically by turning
on warnings and strict at the beginning of your program. If your program
includes the line use warnings; you can catch dozens of common errors,
including variables used only once, which often are typos; scalar variables used
before they are set; and redefined subroutines.

These diagnostic messages can be explained further by including the line use
diagnostics;, which prints an explanation for each warning. Or, you can
look up the explanations using man perldiag.

If your Perl version is older than 5.6, instead of use warnings; you have to use
the -w option on the first line of the script, like this: #!/usr/bin/perl -w.

Finally, you can catch additional common errors with use strict;, which in
effect, forbids a few unsafe programming shortcuts. The rules that use strict
turns on are as follows:

• Variables must be declared before use, with my or our, or imported with
use vars or fully qualified with a package name.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Bare words must be subroutines, not strings, such as $string =
blah;.

• References cannot be symbolic; see sidebar.

As you can see, warnings and strict tighten up a few of Perl's features that can
be used for good but also can be abused. These commands make debugging
easier, because Perl catches these bugs for you.

Symbolic References

Symbolic references are different from regular hard references, where a
variable refers to another variable. Symbolic references are created when the
programmer uses a string as a reference. For example, this normally is valid
Perl code:

$name = "username";
$$name = "da"; # sets $username

This code easily can cause a case of the interpreter doing what you said, not
what you meant. It is easy to put a symbolic reference where a hard reference
was intended or to confuse the generated variable name because it never
appears in the code. A much safer way to accomplish the same thing is to use a
hash to store such variables and to turn on strict variable checking with use
strict.

 What's Wrong with Print Statements?

You might ask at this point, what's wrong with debugging by scattering print
statements in your code? Nothing is wrong with this debugging technique, but
you have more power with the interactive debugger. You can examine all
aspects of the program and environment, not only those you thought of when
you ran the program, and you can see more clearly what the program actually
does. Hopefully, by the end of this article you will agree that investing a little
effort in learning the debugger pays off in saved time.

 Starting the Debugger

The debugger is run from the command line by passing Perl the -d option:

perl -d filename.pl

If you are debugging a CGI program written with CGI.pm, simply call it on the
command line with the arguments you'd like to pass, along with -d:

perl -d filename.pl param=value param2=value

Instead of using the command line, you could use the Perl debugger as part of
certain IDEs, such as GNU Emacs or Activestate Komodo, or from debugger GUI
front ends, such as ddd or ptkdb. For space reasons, I discuss only the
command line in this article, but the principles hold for a GUI debugger as well.

If you're using the command-line debugger, it is useful to have the
Term::ReadLine module installed, which enables cursoring through the
command history.

Here's an example program we use in this article. Copy the following to a file
called sample.pl:

#!/usr/bin/perl

use warnings;
use strict;

my $name = "Pengu";

foreach (1..20) {
 &shout($name);
}

sub shout {
 my $name = shift;
 print "*** $name ***\n";
}

 Essential Debugger Commands

The following seven commands are sufficient for basic debugging:

• s: single-step execute the next line, stepping into subroutines.
• n: single-step execute the next line, stepping over subroutines.
• r: nonstop execute until the return from the current subroutine.
• c <line-number>: nonstop execute until a particular line.
• l <line-number, range or subroutine>: list source code.
• x <expression>: evaluate and pretty-print <expression>.
• q: quit debugger.

To try these out, run the test program with the debugger:

perl -d sample.pl

You should see debugger startup information:

Default die handler restored.
Loading DB routines from perl5db.pl version 1.07
Editor support available.
Enter h or h h for help or
man perldebug for more help:

main::(sample.pl:6): my $name = "Pengu";
 DB<1>

This is the state before the program starts running. The next-to-last line has
useful information about the debugging status: you're in the main package, file
sample.pl line 6, and it displays the line that is about to be run.

The last line is a prompt with the command number (incrementing as you enter
more commands) and angle brackets, where the number of angle brackets
signifies nested commands. You don't need to worry about those here.

Type s at the prompt and press Enter to single-step one line into the program:

 DB<1> s
main::(sample.pl:8): foreach (1..20) {
 DB<1>

To repeat the command, press Enter; repeat this as long as you like to be
convinced that the program is stepping through its paces. Every time you pass
the print statement, it is echoed to the screen, interspaced with the debugging
materials.

Now, try the command to step over subroutines (n), and press Enter a few
times. You go through the loop and receive your subroutine results right away,
without stepping through each command in the subroutine.

Next, try the command to return from the current subroutine (r). But wait—if
you do it now, it will run until the program finishes, because you're “returning”
from the main program. First, do a couple repetitions of s to step into the
subroutine. Then, with an r, you should see something like:

 DB<1> s
main::(sample.pl:8): foreach (1..20) {
 DB<1>
main::(sample.pl:9): &shout($name);
 DB<1>
main::shout(sample.pl:13): my $name = shift;
 DB<1> r
*** Pengu ***
void context return from main::shout
main::(sample.pl:8): foreach (1..20) {
 DB<1>

Notice the void context return from main::shout line. If we had
asked for a return value in the main loop, we would see it displayed here. In
Perl, functions and subroutines can return different values based on the
context of the caller (scalar, array or void). A nice feature of the Perl debugger is

the r command, which tells you what context was requested by the caller. It can
find the bug if you ask your subroutine for a scalar, but you mistakenly have the
subroutine return an array.

Next, we have the l command. Try it now:

 DB<1> l
8==> foreach (1..20) {
9: &shout($name);
10 }
11
12 sub shout {
13: my $name = shift;
14: print "*** $name ***\n";
15 }
 DB<1>

Alone, l lists a page of the source code, starting at the next line to be executed,
with a text arrow pointing to the next line. You also can list a range by
specifying the line numbers, such as l 200-230. Additionally, you can list a
subroutine by naming it: l shout.

The c command continues execution until you hit a particular line number, so
you can jump ahead to a particular piece of code that is interesting:

 DB<1> c 14
main::shout(sample.pl:14): print "*** $name ***\n";
 DB<1>

You can execute any Perl expression, including code that changes the running
program, by typing it at the prompt. This can include setting variables in the
program by hand.

The x command evaluates and pretty-prints any expression, prepending a
numbered index on each line of output, dereferencing anything that can be
dereferenced and indenting each new level of dereferencing. As an example,
below we set an array, @sample, and then display it:

 DB<1> @sample = (1..5)

 DB<2> x @sample
0 1
1 2
2 3
3 4
4 5
 DB<3>

Notice that hashes are displayed with keys and values, each one on a line. You
can display hashes properly by preceeding the hash with a \, which turns the
hash into a hash reference, which is properly dereferenced. This looks like:

 DB<4> %sample = (1 .. 8)

 DB<5> x \%sample
0 HASH(0x83d53bc)
 1 => 2
 3 => 4
 5 => 6
 7 => 8
 DB<6>

When you are satisfied with the results, quit the debugging exercise with q.

 Four More Debugger Commands

Many people use the Perl debugger with no more than these commands. Once
you are comfortable with those, however, an additional four commands can
make your debugging more efficient, especially for programs that use object-
oriented code:

• /<pattern>: lists source code at next regular expression match.
• ?<pattern>: lists source code at previous regular expression match.
• S: lists all subroutines and methods available to the program.
• m <object or package>: lists all methods available on the given object or

package.

You can search and display code that matches a string or regular expression
with / for forward searches and ? for backward searches. There should be no
space before the string you're looking for:

 DB<6> /name
6: my $name = "Pengu";

The S and m commands are useful for exploring what subroutines or methods
are available: S lists every subroutine and method available to the program.
These are in reverse order of when they were loaded by use or require, and
they include routines loaded from the debugger, such as Term::ReadLine. The
m command lists every method available to an object or by way of a package.
Here is a sample:

 DB<7> use CGI

 DB<8> $q = new CGI

 DB<9> m $q

AUTOLOAD
DESTROY
XHTML_DTD
_compile
_make_tag_func
_reset_globals
_setup_symbols
add_parameter
all_parameters
[...]

 Actions, Breakpoints and Watchpoints

Actions, breakpoints and watchpoints provide even more control over the
debugger and the running program. You may prefer using them from a
graphical Perl debugging front end, such as ddd, ptkdb or Activestate Komodo.
The most common complaint about the Perl debugger is remembering the
proper command-line shortcut for each command, and these commands add
still more shortcuts to remember.

Additionally, in Perl 5.8 some of the keyboard commands have changed to
make them more internally consistent. Often, though, people need to use both
5.8 and an earlier version, so it may be easier to use a GUI. I describe the
commands from the command line below; the principles remain the same.

An action is used to wedge code into your program without modifying the
source file. It can be useful when the code is in production and you want to test
a change. It's also useful if you're in the middle of a debugging run and want to
change code without restarting the debugging session from scratch.

You set an action like so, a <line-number> <code>. An example could be:

DB<10> a 9 $index = $_;

This adds a new command inside the foreach loop that stores the index count,
which is incremented each time through. If you list the program, you see an a
next to the line number that has the action. The action is executed before the
line to which it is attached. You can list actions you've set with L and delete an
action by specifying a with the line number without a command. The previous
is for Perl 5.6 and earlier; in Perl 5.8, delete an action with A and the line
number of the action.

Breakpoints and watchpoints return control to the debugger from continuous
execution, such as from r and c described above. They are useful for jumping
ahead to the particular iteration of a loop that is having problems, without
repeatedly stepping through the loop by hand.

A breakpoint is set on a line number or subroutine, with an optional condition
that must be met. A breakpoint is set with b as shown here:

b shout

If you list the program, you can see a b next to the line number at the first line
of the subroutine shout. Press C to continue execution, and it stops inside the
subroutine.

If you followed the previous example and set the action on line 9, you could set
a breakpoint to stop on a particular iteration of this loop:

b shout ($index eq 8)

This should give you an idea of the power of actions and breakpoints, if you
imagine debugging a longer program with complex conditional statements and
external data sources.

You can list breakpoints with L and delete one with d in Perl 5.6 and earlier. In
Perl 5.8, you delete a breakpoint with B.

A watchpoint probably is better known as a watch expression. It halts the
program as soon as a specified expression changes. In Perl 5.6, it is set with W
as shown here:

W $name

You can list watchpoints with L and delete all of them by specifying no
parameter to W. In Perl 5.8, add a watchpoint with w and delete it with W.

 Customizing the Perl Debugger

The first thing to know is that the debugger is simply a Perl library that takes
advantage of hooks in the Perl interpreter. You could replace the debugger
completely, if you like, by copying the file somewhere and requiring the file in
your code in a BEGIN loop:

cp /usr/lib/perl5/5.6.1/perl5db.pl ~/myperl5db.pl

And, place this line in your program:

BEGIN { require "~/myperl5db.pl" }

You might do this, for example, if you preferred the syntax and operation of the
5.6 version debugger over the 5.8 version.

You also can specify an alternative debugger with the -d command switch. Perl
versions 5.6 onward include DProf, a profiler that uses debugger hooks. You
can use it like this:

perl -d:DProf mycode.pl

You also can use the debugger hooks in your own programs. You can set a
breakpoint directly in your code by setting the variable $DB::single = 1;,
which is useful if you need to debug code in a BEGIN block. Otherwise, they are
executed before the debugger gives you a prompt. Or, you could use the hooks
to run particular code whenever any subroutine is run. To find out more about
these and other hooks, check the perldebug man page.

The debugger has a set of internal variables, also described in the perldebug
man page. To change these variables you can use a configuration file, .perldb in
the current directory or in your home directory. This configuration file has Perl
code that is run when the debugger starts. For example, you can add new
commands of your own, like this:

$DB::alias{'quit'} = 's/^quit(\s*)/q/';

This allows you to quit the debugger by typing quit at the prompt. The
perldebug man page describes a few similar aliases that might be useful.

A number of debugger options can be set inside the debugger with the O
command. The only one I have used changes the pager:

O pager=|less

This way, any command that would print more than a screen of output can be
sent through your favorite pager by using a pipe character before the
command: |L.

Resources for this article: www.linuxjournal.com/article/7962.

Daniel Allen (da@coder.com) discovered UNIX courtesy of a 1,200-baud
modem, a free local dial-up and a guest account at MIT, back when those things
existed. He has been an enthusiastic Linux user since 1995. He is President of
Prescient Code Solutions, a software consulting company in Kitchener, Ontario,
and Ithaca, New York.

Archive Index Issue Table of Contents

 Advanced search

http://www.linuxjournal.com/article/7962
mailto:da@coder.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

 The Oddmuse Wiki Engine

Brian Tanaka

Issue #131, March 2005

Wikis are fun and useful. Try one on for size by installing Alex Schroeder's
Oddmuse.

In 1995, Ward Cunningham established the first wiki Web site, the WikiWikiWeb,
for the Portland Pattern Repository Project. In the years since, a number of wiki
engines have been developed in a variety of programming languages. One such
wiki engine is Oddmuse, written in Perl by Alex Schroeder.

 What Is a Wiki?

Although wikis have been around for nearly a decade, they appear to be
enjoying a rise in popularity, and many people only now are encountering the
wiki concept. Therefore, a brief overview of wikis is in order. If you already are
familiar with wikis, you might want to skip to the next section.

The underlying concept of a wiki is simple: a wiki is a Web site that allows any
user to add and edit pages by using nothing more than a Web browser. This
simple arrangement is quite powerful. It enables arbitrarily large numbers of
volunteer editors to contribute to collaboratively created Web sites. It also
enables smaller groups or even lone individuals to create and organize
information with great ease. Put another way, as Cunningham once said, “[A
wiki is] the simplest on-line database that could possibly work.”

In my experience, I've found wikis to be useful tools that make tasks such as
organizing projects and creating documentation about almost anything
surprisingly less painful and time consuming than they often can be. Perhaps
the best way to grasp what wikis are, how they work and the scale and quality
of documents that can grow from them, is to explore a mature, established
wiki. An excellent example is Wikipedia.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Wikipedia is an encyclopedia, exactly like a multivolume, printed-and-bound
encyclopedia. Unlike a bound encyclopedia, however, the Wikipedia has an
enormous “editorial staff” composed of any Internet user with a Web browser.
In addition, the text of each article is hyperlinked where appropriate to other
Wikipedia articles. Any visitor to the site can create and edit articles, additions
and changes that become immediately accessible to other users. A revision
control system allows changes to be backed out easily, guarding against
mistaken or malicious edits.

As an example of how easy it is to contribute content to a wiki, let's say you are
reading, on some wiki Web site, an article about rodents. You notice that,
although it's a fine article, it fails to mention the world's largest living rodent,
the capybara. To correct this omission, you click the Edit text of this page link,
after which you are presented with a standard Web form that allows you to edit
the text. You do so by adding a sentence about the capybara, and when you
save your changes, the new version of the article instantly is available. It's that
easy.

Figure 1. Typical Oddmuse page footer, with links to common wiki functions such as edit text
of this page and search.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f2.large.jpg

Figure 2. Typical edit text of this page form. Not shown in this screenshot are the Preview and
Save buttons.

Let's also say you made reference in the article to South America, because it's
the habitat of the capybara, and you wanted the words South America to be a
link to an article about South America. To create that link, you would use one of
the simple wiki linking syntax rules—enclosing South America in double square
brackets if the site uses Oddmuse—and the wiki engine creates the link to the
South American article when it generates the page. If there is no South
American article, the wiki engine then creates a link to a form that allows
anyone to write one. In this way, article by article, the wiki grows and becomes
increasingly useful.

Another example, and one that demonstrates the usefulness of wikis for small
groups, is the wiki that my business partner and I use. We use it to record
technical information, such as server configuration changes, project
documentation, software installations, standard procedures for common tasks
and so on. We also use it to track business data, such as client contact
information.

The benefits have been abundantly obvious for us. Based on past experience,
we've noticed that a much greater percentage of system administration and
project documentation is recorded than if we were not using the wiki.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f2.large.jpg

Furthermore, the information is searchable and easy to edit. And, because we
have an RSS feed for article changes and additions, everyone involved can stay
up to date easily.

 Oddmuse Features

Oddmuse is a single Perl script. This makes basic installation straightforward
and supports another of Schroeder's project goals: to keep Oddmuse simple
and easy to use. The potential loss of flexibility is offset by Oddmuse's
extensibility. As evidence, you can find a list of available modules on the project
Web site.

Aside from the ordinary, requisite wiki features, such as automatic tracking of
recent changes, powerful linking syntax, revision control and visual diffs of
revisions, Oddmuse has a number of notable features and advantages. One of
the first things that impressed me about Oddmuse was the quality of its
documentation. Schroeder makes abundant documentation in an assortment
of languages a priority, and it shows. Conveniently, he gets to use the tool he's
documenting to write and maintain the documentation. A visit to the Oddmuse
project Web site is both a demonstration of the engine in action and an
encounter with ample information about how to set up, use and customize it.

Figure 3. Oddmuse's visual diff makes understanding what has changed between revisions
obvious and clear.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f4.large.jpg

Figure 4. Typical History page. Checkboxes allow the user to define which page revisions to
diff.

As someone who strives to adhere to World Wide Web Consortium (W3C)
standards, I was pleased to note that Oddmuse produces valid HTML 4.01
Transitional. On a related note, Oddmuse integrates nicely with Cascading Style
Sheets (CSS). If you're interested in syndication by way of RSS, Oddmuse
supports both an outbound RSS feed for your wiki and inbound RSS feed
aggregation.

An obvious concern for any wiki is page vandalism. What, after all, is to prevent
someone from editing a page and intentionally making a mess of it in one way
or another? If you want to take full advantage of wikis' biggest strength—
namely, that anyone can create and edit pages—simply leave the system open
and revert defaced pages as they appear. An attentive group of editors can
catch vandalism by monitoring the RecentChanges page.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f5.large.jpg

Figure 5. Typical RecentChanges Page

If, on the other hand, you prefer to forgo the advantages of open editing and
would prefer to prevent vandalism in the first place, Oddmuse provides two
methods for doing so. You can lock specific pages or the entire site and use
passwords to grant page editing permission to certain individuals. Your other
option is simply to ban problematic users.

Oddmuse uses flat files for data storage rather than a database such as MySQL
or PostgreSQL. A good argument can be made for why this is a strength, and an
equally good argument can be made for why this is a weakness. On the one
hand, using flat files instead of a database means more simplicity and less
administrative overhead. On the other hand, databases provide advantages
when it comes to data storage and retrieval. If you feel that you must have a
database behind your wiki, then Oddmuse is not for you. However, if your
concern is speed, it's worth noting that searches are reasonably fast, for
instance, on the Emacs Wiki, which uses Oddmuse and currently has 2,242
pages.

 Installation

The installation section of the Oddmuse Web site has links to the latest version
of the script and guides to installing and configuring it. Basic installation is
absurdly simple. Once you've downloaded the script, simply place it in your CGI
directory and make it executable. It should work immediately. If it doesn't,
consult the troubleshooting guide on the Oddmuse Web site.

Even if you have no plans to customize your wiki, you should make one
important change before you do anything else. Namely, you should change the

https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7583f5.large.jpg

$DataDir variable in the script to the absolute path of the directory in which you
would like Oddmuse to store its data. If you don't change this variable,
Oddmuse uses /tmp/oddmuse as its data directory, and you could lose your
data down the road.

Another step you should take, no matter how simple or complex you intend to
make your wiki configuration, is setting the administrator and editor
passwords. The variables to change are, respectively, $AdminPass and
$EditPass. Because the passwords are stored in plain text, the security of your
wiki is only as good as the security of your server in general. Nonetheless, you
should pick strong passwords.

Although the basic installation provides a fully functional Oddmuse wiki and
may be all you need, you might want to consider the more-advanced
installation. I chose the more-advanced installation for the Oddmuse wikis I've
set up recently, and I've found that the added flexibility is well worth the trivial
amount of additional effort required during its setup.

First, I used the wrapper script strategy clearly explained on the Web site. This
strategy eliminates the need to define the data directory pathname every time
you upgrade the script. Second, I used an external configuration file, and in it I
specified an external CSS file.

 Configuration

Now that your Oddmuse wiki is up and running, you can customize it as much
as you like. Some configuration is accomplished through the wiki itself, such as
locking pages or the entire site if you don't want an open wiki.

In order to perform configuration changes and other administrative functions
by way of the wiki, you need to authenticate yourself as an administrator. To do
so, you must visit the password page. There's no link to the password page by
default, so you must go to the following URL manually: http://
www.example.com/wiki/current.cgi?action=password. You must substitute your
own hostname and path, of course. Also, the Oddmuse CGI program in the
above example URL is called current.cgi per the Oddmuse wrapper script
installation instructions. Once you're authenticated, you can use the special
menu items that appear in the footer of every page to make the configuration
changes you desire.

Other changes are implemented by editing the script itself. A number of
configuration variables can be changed to suit your preferences. If you elected
to use an external configuration file, you can change configuration variables
there instead.

The Web site provides detailed explanations of all configuration variables.
Some examples of what they control include the name of the wiki, which
stylesheet to use, the URL of your logo, what's displayed in the footer of every
page and so on.

I'm glad Schroeder included CSS support in Oddmuse, because it makes
altering the layout and appearance of a wiki much easier than it otherwise
would have been. Once the wiki was up and running, I spent a few minutes
experimenting with changes to the stylesheet until the wiki looked the way I
wanted.

Beyond that, you can make significant additional changes to the wiki by using
the available modules and extensions or even by writing your own. See the
Oddmuse Web site for a full list of modules and extensions. If you want to, you
even can make Oddmuse behave like a blogging system.

 Bringing the Wiki to Life

Once you're satisfied with your wiki installation and configuration, you can
begin creating pages. But before you do, I strongly recommend that you read
the Text Formatting Rules section of the Oddmuse Web site. Once you know
the rules, creating and editing pages is easy to do, but it's invaluable to know
what you can accomplish by using those rules.

As founder of a new wiki, you need to know more than only the details of the
technology. A successful wiki depends on the participation of contributors, and
the social component needs to be cared for as much as any of the technical
components. This complicates things significantly. After all, social communities
don't come in tarballs with makefiles! You need to encourage and entice people
to participate, and you need to nurture the community that grows around the
wiki. This takes time and is hardly a precise science.

Fortunately, founders of other wikis have taken the time to write about their
experiences. One excellent resource is the WikiLifeCycle page on the
MeatballWiki (see the on-line Resources). In it you can learn about best
practices for attracting contributors, choosing a name, establishing effective
boundaries, defining the mission or goal of the wiki, shaping behavioral norms,
preventing stagnation and so on. Now, armed with a well-configured wiki and a
grasp of the nontechnical, social issues, the road to a thriving wiki lies open
before you.

Resources for this article: www.linuxjournal.com/article/8010.

http://www.linuxjournal.com/article/8010

Brian Tanaka has been a UNIX system administrator since 1994 and has
worked for companies such as The Well, SGI, Intuit and RealNetworks. He can
be reached at btanaka@well.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:btanaka@well.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 LaTeX Equations and Graphics in PHP

Titus Barik

Issue #131, March 2005

Make the difficulties of displaying mathematical equations on the Web a thing
of the past by embedding LaTeX content in your pages.

It's safe to say that the world of Weblogs and wiki Web sites are here to stay.
Although such systems are great for journals, general text posting and even
photography, their limitations become apparent when working in
environments that require the use of features more advanced than simple text
entry and images. In particular, technical Weblogs need support for graphs,
mathematical expressions, diagrams and more. Such functionality is difficult, if
not impossible, to implement with HTML alone.

Using external applications such as dia, xfig and Microsoft Equation Editor is
equally difficult, as the poster first must create the figure or mathematical
equation and then upload an image representation to a Web site. Moreover, if
other posters in a collaborative Weblog want to modify the figure, they also
must possess the application as well as the original file that created the image.
Obviously, this sort of system has its share of complications, and it fragments
the overall quality of figures and equations for a site.

In this article, I demonstrate the use of LaTeX, a typesetting tool and language
designed specifically for technical document preparation, from within PHP to
address these demands. I call LaTeX from within PHP when HTML is not
sufficient to address these complex needs and then render the result uniformly
as a PNG image, a format all modern browsers support. Because the software
is available entirely on the server, all posters and users have access to the same
set of tools and packages for publication.

Why Not MathML?

According to the W3C, MathML is a low-level XML specification for describing
mathematics. Although MathML is human-readable, in all but the simplest

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

cases, authors need to use equation editors or other utilities to generate XML
code for them. Moreover, modern browsers support only a limited subset of
the MathML language, and even then, many of these browsers require external
plugins to support MathML. Although the future is quite promising for this
language, as of now, it essentially is unsupported and unusable.

To complicate matters further, Leslie Lamport's LaTeX typesetting system has
become the de facto standard for the production of technical and scientific
documentation. Based on Donald Knuth's TeX document layout system from
the early 1970s, LaTeX has been around since 1994 and is a mature and well-
understood technical documentation preparation platform with a committed
user base. That's not to say that learning LaTeX is a walk in the park. It certainly
isn't, but as of now, MathML does not provide compelling evidence to warrant a
transition from this already-established system.

 Requirements

Following the UNIX philosophy to “write programs to work together”, I use a
composition of common tools available for the Linux platform and chain them
together to produce a PNG-equivalent rendering of the LaTeX source.
Specifically, you need a recent version of LaTeX with dvips and the ImageMagick
toolkit. You are going to use the convert utility from the ImageMagick tools to
convert your result into a PNG image. Luckily, most hosting providers that
provide shell access already have these utilities available.

 Project Overview

The rendering system takes a string of text and extracts segments enclosed in
[tex] and [/tex] pairs for future substitution. These extracted segments are
called thunks. If a thunk previously has been processed, meaning an image
representation of the thunk code already is available, the thunk is replaced with
a URL to that image. If the thunk is new, it is passed to the LaTeX typesetter,
which outputs its result as a DVI file. The DVI file then is converted to a PNG
image with ImageMagick and placed into the cache directory. A URL of the
newly created image is substituted for the thunk in the original text. When all
thunks have been processed, the resulting text is returned to the caller. The
process for converting a single thunk is illustrated in Figure 1.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7870f1.large.jpg

Figure 1. A Flowchart of the Rendering Process for a Single Thunk

 Usage

I think it is best to start top-down and first look at how to invoke the rendering
process, without discussing implementation specifications. The driver is simply
an HTML front end that provides a mechanism for testing the LaTeX rendering
system. It allows you to see how the render class should be invoked. To get you
started, I've provided the basic template shown in Listing 1.

Listing 1. render_example.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html>
<head>
<title>LaTeX Equations and Graphics in PHP</title>
</head>

<body>

<!-- form to enter LaTeX code -->
<form action="render_example.php" method="post">
<textarea rows="20"
 cols="60"
 name="render_text"></textarea>

<input name="submit"
 type="submit"
 value="Render" />
</form>

<?php

if (isset($_POST['submit'])) {
 echo '<h1>Result</h1>';

 require('render.class.php');

 $text = $_POST['render_text'];

 if (get_magic_quotes_gpc())
 $text = stripslashes($text);

 $render = new render();
 echo $render->transform($text);

}
?>

https://secure2.linuxjournal.com/ljarchive/LJ/131/7870f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7870f1.large.jpg

</body>
</html>

This PHP page provides a form for entering LaTeX code and then replaces the
thunks with URLs to rendered PNG images through the transform method.
Everything else is done behind the scenes in the render class.

 Minimal Configuration Options

The skeleton for the render class is shown in Listing 2.

Listing 2. render.php

class render {

 var $LATEX_PATH = "/usr/local/bin/latex";
 var $DVIPS_PATH = "/usr/local/bin/dvips";
 var $CONVERT_PATH = "/usr/local/bin/convert";

 var $TMP_DIR =
 "/usr/home/barik/public_html/gehennom/lj/tmp";
 var $CACHE_DIR =
 "/usr/home/barik/public_html/gehennom/lj/cache";

 var $URL_PATH = "http://www.barik.net/lj/cache";

 function wrap($text) { ... }
 function transform($text) { ... }
 function render_latex($text) { ... }

}

You need to let PHP know where your tools are located and provide a directory
where PHP can write temporary files and store its cache. For convenience, a
URL_PATH also is needed. This URL_PATH is used when generating the image
tags in HTML.

Don't be fooled by the simplicity. A vast array of options is available that you
can pass to LaTeX and ImageMagick to modify the output PNG image, and you
should explore them all. Here, I've merely provided the framework.

 wrap Method

The wrap method takes your LaTeX thunk and surrounds it with a prologue and
epilogue to create a valid LaTeX source file. You can consider this to be the
equivalent of adding additional includes to a C file or importing packages in
Java to extend the functionality of the language (Listing 3).

Listing 3. wrap.php7870l3.qrk

function wrap($thunk) {
 return <<<EOS
 \documentclass[10pt]{article}

 % add additional packages here
 \usepackage{amsmath}
 \usepackage{amsfonts}
 \usepackage{amssymb}
 \usepackage{pst-plot}
 \usepackage{color}

 \pagestyle{empty}
 \begin{document}
 $thunk
 \end{document}
EOS;
}

As you can see, I include the packages I routinely need in the LaTeX wrapper.
Consequently, I've included the American Mathematical Society (AMS) package,
which provides additional mathematical constructs, as well as the PSTricks
package to render vector graphics. The pagestyle is set to empty so that page
numbers do not appear on images. Also, the thunk is inserted between the
document blocks.

Not all of these packages may be available on your system. If necessary, you
can download additional packages from the Comprehensive TeX Archive
Network (CTAN) Web site (see the on-line Resources) to extend the functionality
of your base LaTeX system. For example, packages for bar charts, UML notation
and even Karnaugh maps can be downloaded. Whatever your needs, the
repository is worth a look.

 render_latex Method

The render_latex method (Listing 4) extracts all thunks and processes them
individually until the thunk pool is exhausted.

Listing 4. render_latex.php

function render_latex($thunk, $hash) {

 $thunk = $this->wrap($thunk);

 $current_dir = getcwd();
 chdir($this->TMP_DIR);

 // create temporary LaTeX file
 $fp = fopen($this->TMP_DIR . "/$hash.tex", "w+");
 fputs($fp, $thunk);
 fclose($fp);

 // run LaTeX to create temporary DVI file
 $command = $this->LATEX_PATH .
 " --interaction=nonstopmode " .
 $hash . ".tex";
 exec($command);

 // run dvips to create temporary PS file
 $command = $this->DVIPS_PATH .
 " -E $hash" .
 ".dvi -o " . "$hash.ps";
 exec($command);

 // run PS file through ImageMagick to

 // create PNG file
 $command = $this->CONVERT_PATH .
 " -density 120 $hash.ps $hash.png";
 exec($command);

 // copy the file to the cache directory
 copy("$hash.png", $this->CACHE_DIR .
 "/$hash.png");

 chdir($current_dir);

}

The thunk parameter is obvious: it's the block of LaTeX code we're currently
examining. The hash parameter is a unified version of the thunk, essentially, an
md5 of the filename base.

I change to the temporary directory and write the thunk to a temporary LaTeX
file. LaTeX then creates a DVI file. The command-line parameter tells LaTeX to
run non-interactively. The resulting DVI file is converted to PostScript with the
use of dvips, and the -E option specifies a bounding box. I then run the
resulting PostScript file through convert—that's the program name—to convert
the file to a PNG image. The convert tool has a slew of options, and the settings
that will work best for you depend on your site.

Finally, be aware that the exec command returns a failure status code. For
brevity, I've left out the error checking and always assume that all steps
succeed. LaTeX also has a few dangerous commands that could be an issue for
multiuser Web sites. It therefore might be prudent to return an error if certain
keywords are found in the thunk.

When Things Go Awry

If something goes wrong at the rendering stage, you can try to process a LaTeX
file manually by using the shell with the following commands for diagnostics:

latex --interaction=nonstopmode my.tex
dvips -E my.dvi -o my.ps
convert -density 120 my.ps my.png

This allows you to isolate the specific step at which the LaTeX renderer fails.

 cleanup Method

During the LaTeX rendering process, a large number of temporary files are
created. This cleanup method deletes these extraneous files, and there's really
not much to it, as shown in Listing 5.

Listing 5. cleanup.php

function cleanup($hash) {

 $current_dir = getcwd();
 chdir($this->TMP_DIR);

 unlink($this->TMP_DIR . "/$hash.tex");
 unlink($this->TMP_DIR . "/$hash.aux");
 unlink($this->TMP_DIR . "/$hash.log");
 unlink($this->TMP_DIR . "/$hash.dvi");
 unlink($this->TMP_DIR . "/$hash.ps");
 unlink($this->TMP_DIR . "/$hash.png");

 chdir($current_dir);
}

 transform Method

The transform method, shown in Listing 6, drives the rendering class and
provides a public access point for the programmer.

Listing 6. transform.php

function transform($text) {

 preg_match_all("/\[tex\](.*?)\[\/tex\]/si", $text, $matches);

 for ($i = 0; $i < count($matches[0]); $i++) {

 $position = strpos($text, $matches[0][$i]);
 $thunk = $matches[1][$i];

 $hash = md5($thunk);
 $full_name = $this->CACHE_DIR . "/" .
 $hash . ".png";
 $url = $this->URL_PATH . "/" .
 $hash . ".png";

 if (!is_file($full_name)) {
 $this->render_latex($thunk, $hash);
 $this->cleanup($hash);
 }

 $text = substr_replace($text,
 "",
 $position, strlen($matches[0][$i]));
 }

 return $text;
}

The preg_match_all function in PHP extracts the thunks as well as the positions
of each thunk. Each thunk then is parsed individually through the loop. Next, a
unique md5 of the thunk text is created. This tells us whether a thunk has been
cached before. If the thunk has not been cached, I call the LaTeX renderer
method and immediately clean up the resulting temporary files. In either case,
the thunk is substituted with a URL. When all thunks are processed, the text is
returned.

 Equation Examples

Now, let's look at a few examples that illustrate the kinds of equations you can
render with the help of LaTeX. Most of these equations are taken from A Guide
To LaTeX by Helmut Kopka and Patrick W. Daly, considered by many to be one
of the essential books on the LaTeX system.

Figure 2. Example: Fractions

[tex]
\begin{displaymath}
\frac{a^2 - b^2}{a + b} = a - b
\end{displaymath}
[/tex]

Figure 3. Example: Correlation of Two Variables, X and Y

[tex]
\begin{displaymath}
\mathop{\mathrm{corr}}(X,Y)=
\frac{\displaystyle
\sum_{i=1}^n(x_i-\overline x)
(y_i-\overline y)}
{\displaystyle\biggl[
\sum_{i=1}^n(x_i-\overline x)^2
\sum_{i=1}^n(y_i-\overline y)^2
\biggr]^{1/2}}
\end{displaymath}
[/tex]

Figure 4. Example: A More Complex Equation

[tex]
\begin{displaymath}
I(z) = \sin(\frac{\pi}{2} z^2) \sum_{n=0}^\infty
 \frac{ (-1)^n \pi^{2n} }{1 \cdot 3
 \cdots (4n + 1) } z^{4n + 1}

https://secure2.linuxjournal.com/ljarchive/LJ/131/7870f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7870f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7870f4.large.jpg

 -\cos(\frac{\pi}{2} z^2) \sum_{n=0}^\infty
 \frac{ (-1)^n \pi^{2n + 1} }{1 \cdot 3
 \cdots (4n + 3) } z^{4n + 3}
\end{displaymath}
[/tex]

 Plotting Examples

Though LaTeX is a mathematical typesetting powerhouse, it also is capable in
other arenas with the help of packages such as PSTricks. These plots are
provided courtesy of Herbert Voss. On his Web site (see Resources), you can
find further examples of using PSTricks to test the LaTeX rendering system.
Getting some of his more-advanced examples to display correctly, however,
may require considerable effort.

Figure 5. Example: Plot of 10x ex, and 2x

[tex]
\psset{unit=0.5cm}
\begin{pspicture}(-4,-0.5)(4,8)
\psgrid[subgriddiv=0,griddots=5,
 gridlabels=7pt](-4,-0.5)(4,8)
\psline[linewidth=1pt]{->}(-4,0)(+4,0)
\psline[linewidth=1pt]{->}(0,-0.5)(0,8)
\psplot[plotstyle=curve,
 linewidth=0.5pt]{-4}{0.9}{10 x exp}
\rput[l](1,7.5){10^x}
\psplot[plotstyle=curve,linecolor=red,
 linewidth=0.5pt]{-4}{3}{2 x exp}
\rput[l](2.2,7.5){\color{blue}e^x}
\psplot[plotstyle=curve,linecolor=blue,
 linewidth=0.5pt]{-4}{2.05}{2.7183 x exp}
\rput[l](3.2,7.5){\color{red}2^x}
\rput(4,8.5){\color{white}change\normalcolor}
\rput(-4,-1){\color{white}bounding box\normalcolor}
\end{pspicture}
[/tex]

Figure 6. Example: Ceil Function

[tex]
\SpecialCoor
\begin{pspicture}(-3,-3)(3,3)
 \multido{\i=-2+1}{6}{%
 \psline[linewidth=3pt,linecolor=red]
 (\i,\i)(! \i\space 1 sub \i)}%
 \psaxes[linewidth=0.2mm]{->}(0,0)(-3,-3)(3,3)
\end{pspicture}
[/tex]

 Available Implementations

Several implementations of LaTeX renderers are available on the Web today,
some of which work better than others. Steve Mayer, for example, now
maintains Benjamin Zeiss' original LaTeX renderer for PHP. Mayer also has
written several plugins for common Weblog systems, including WordPress. If
you want a pluggable solution for your site, this is the one I recommend.

Additionally, John Walker provides textogif, a Perl program that uses the
LaTeX2HTML tools to render images in either GIF or PNG format by way of CGI.
Finally, John Forkosh provides mimeTeX, written using C through CGI. Its
advantage is that it does not require LaTeX or ImageMagick but does so at the
expense of rendering quality.

 Conclusion

Integrating LaTeX with your wiki or Weblog at first may seem like a daunting
task. Once you get the hang of it, however, you'll wonder how you ever lived
without it. Using this model, you also can see how other languages might be
embedded within PHP in addition to LaTeX. Other ideas to consider include
using Gnuplot to generate plots, Octave to evaluate complex expressions or
POV-Ray to render 3-D scenes.

Today, the topics represented by the Weblog community largely are
disproportionate. Indeed, many technical writers outside the field of
programming have stayed away from Weblogs simply because the means to
convey their ideas easily do not exist. I hope that the use of LaTeX rendering
systems for the Web will bridge this critical gap.

Resources for this article: www.linuxjournal.com/article/8011.

Titus Barik is an IT consultant for small businesses. He's also an active
Weblogger and technical bookworm. You can visit his Weblog at barik.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/8011
http://barik.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Optimization in GCC

M. Tim Jones

Issue #131, March 2005

Here's what the O options mean in GCC, why some optimizations aren't optimal
after all and how you can make specialized optimization choices for your
application.

In this article, we explore the optimization levels provided by the GCC compiler
toolchain, including the specific optimizations provided in each. We also identify
optimizations that require explicit specifications, including some with
architecture dependencies. This discussion focuses on the 3.2.2 version of gcc
(released February 2003), but it also applies to the current release, 3.3.2.

 Levels of Optimization

Let's first look at how GCC categorizes optimizations and how a developer can
control which are used and, sometimes more important, which are not. A large
variety of optimizations are provided by GCC. Most are categorized into one of
three levels, but some are provided at multiple levels. Some optimizations
reduce the size of the resulting machine code, while others try to create code
that is faster, potentially increasing its size. For completeness, the default
optimization level is zero, which provides no optimization at all. This can be
explicitly specified with option -O or -O0.

 Level 1 (-O1)

The purpose of the first level of optimization is to produce an optimized image
in a short amount of time. These optimizations typically don't require
significant amounts of compile time to complete. Level 1 also has two
sometimes conflicting goals. These goals are to reduce the size of the compiled
code while increasing its performance. The set of optimizations provided in -O1
support these goals, in most cases. These are shown in Table 1 in the column
labeled -O1. The first level of optimization is enabled as:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

gcc -O1 -o test test.c

Table 1. GCC optimizations and the levels at which they are enabled.

Any optimization can be enabled outside of any level simply by specifying its
name with the -f prefix, as:

gcc -fdefer-pop -o test test.c

We also could enable level 1 optimization and then disable any particular
optimization using the -fno- prefix, like this:

gcc -O1 -fno-defer-pop -o test test.c

This command would enable the first level of optimization and then specifically
disable the defer-pop optimization.

 Level 2 (-O2)

The second level of optimization performs all other supported optimizations
within the given architecture that do not involve a space-speed trade-off, a
balance between the two objectives. For example, loop unrolling and function
inlining, which have the effect of increasing code size while also potentially
making the code faster, are not performed. The second level is enabled as:

gcc -O2 -o test test.c

Table 1 shows the level -O2 optimizations. The level -O2 optimizations include
all of the -O1 optimizations, plus a large number of others.

 Level 2.5 (-Os)

The special optimization level (-Os or size) enables all -O2 optimizations that do
not increase code size; it puts the emphasis on size over speed. This includes all
second-level optimizations, except for the alignment optimizations. The
alignment optimizations skip space to align functions, loops, jumps and labels
to an address that is a multiple of a power of two, in an architecture-dependent
manner. Skipping to these boundaries can increase performance as well as the
size of the resulting code and data spaces; therefore, these particular
optimizations are disabled. The size optimization level is enabled as:

gcc -Os -o test test.c

In gcc 3.2.2, reorder-blocks is enabled at -Os, but in gcc 3.3.2 reorder-blocks is
disabled.

 Level 3 (-O3)

The third and highest level enables even more optimizations (Table 1) by
putting emphasis on speed over size. This includes optimizations enabled at -
O2 and rename-register. The optimization inline-functions also is enabled here,
which can increase performance but also can drastically increase the size of the
object, depending upon the functions that are inlined. The third level is enabled
as:

gcc -O3 -o test test.c

Although -O3 can produce fast code, the increase in the size of the image can
have adverse effects on its speed. For example, if the size of the image exceeds
the size of the available instruction cache, severe performance penalties can be
observed. Therefore, it may be better simply to compile at -O2 to increase the
chances that the image fits in the instruction cache.

 Architecture Specification

The optimizations discussed thus far can yield significant improvements in
software performance and object size, but specifying the target architecture
also can yield meaningful benefits. The -march option of gcc allows the CPU
type to be specified (Table 2).

Table 2. x86 Architectures

Target CPU Types -march= Type

i386 DX/SX/CX/EX/SL i386

i486 DX/SX/DX2/SL/SX2/DX4 i486

487 i486

Pentium pentium

Pentium MMX pentium-mmx

Pentium Pro pentiumpro

Pentium II pentium2

Celeron pentium2

Pentium III pentium3

Pentium 4 pentium4

Via C3 c3

Winchip 2 winchip2

Winchip C6-2 winchip-c6

AMD K5 i586

AMD K6 k6

The default architecture is i386. GCC runs on all other i386/x86 architectures,
but it can result in degraded performance on more recent processors. If you're
concerned about portability of an image, you should compile it with the default.
If you're more interested in performance, pick the architecture that matches
your own.

Let's now look at an example of how performance can be improved by focusing
on the actual target. Let's build a simple test application that performs a bubble
sort over 10,000 elements. The elements in the array have been reversed to
force the worst-case scenario. The build and timing process is shown in Listing
1.

Listing 1. Effects of Architecture Specification on a Simple Application

[mtj@camus]$ gcc -o sort sort.c -O2
[mtj@camus]$ time ./sort

real 0m1.036s
user 0m1.030s
sys 0m0.000s
[mtj@camus]$ gcc -o sort sort.c -O2 -march=pentium2
[mtj@camus]$ time ./sort

real 0m0.799s
user 0m0.790s
sys 0m0.010s
[mtj@camus]$

By specifying the architecture, in this case a 633MHz Celeron, the compiler can
generate instructions for the particular target as well as enable other
optimizations available only to that target. As shown in Listing 1, by specifying
the architecture we see a time benefit of 237ms (23% improvement).

Target CPU Types -march= Type

AMD K6 II k6-2

AMD K6 III k6-3

AMD Athlon athlon

AMD Athlon 4 athlon

AMD Athlon XP/MP athlon

AMD Duron athlon

AMD Tbird athlon-tbird

Although Listing 1 shows an improvement in speed, the drawback is that the
image is slightly larger. Using the size command (Listing 2), we can identify the
sizes of the various sections of the image.

Listing 2. Size Change of the Application from Listing 1

[mtj@camus]$ gcc -o sort sort.c -O2
[mtj@camus]$ size sort
 text data bss dec hex filename
 842 252 4 1098 44a sort
[mtj@camus]$ gcc -o sort sort.c -O2 -march=pentium2
[mtj@camus]$ size sort
 text data bss dec hex filename
 870 252 4 1126 466 sort
[mtj@camus]$

From Listing 2, we can see that the instruction size (text section) of the image
increased by 28 bytes. But in this example, it's a small price to pay for the speed
benefit.

 Math Unit Optimizations

Some specialized optimizations require explicit definition by the developer.
These optimizations are specific to the i386 and x86 architectures. A math unit,
for one, can be specified, although in many cases it is automatically defined
based on the specification of a target architecture. Possible units for the -
mfpmath= option are shown in Table 3.

Table 3. Math Unit Optimizations

The default choice is -mfpmath=387. An experimental option is to specify both
sse and 387 (-mfpmath=sse,387), which attempts to use both units.

 Alignment Optimizations

In the second optimization level, we saw that a number of alignment
optimizations were introduced that had the effect of increasing performance
but also increasing the size of the resulting image. Three additional alignment
optimizations specific to this architecture are available. The -malign-int option
allows types to be aligned on 32-bit boundaries. If you're running on a 16-bit

Option Description

387 Standard 387 Floating Point Coprocessor

sse Streaming SIMD Extensions (Pentium III, Athlon 4/XP/MP)

sse2 Streaming SIMD Extensions II (Pentium 4)

aligned target, -mno-align-int can be used. The -malign-double controls
whether doubles, long doubles and long-longs are aligned on two-word
boundaries (disabled with -mno-align-double). Aligning doubles provides better
performance on Pentium architectures at the expense of additional memory.

Stacks also can be aligned by using the option -mpreferred-stack-boundary. The
developer specifies a power of two for alignment. For example, if the developer
specified -mpreferred-stack-boundary=4, the stack would be aligned
on a 16-byte boundary (the default). On the Pentium and Pentium Pro targets,
stack doubles should be aligned on 8-byte boundaries, but the Pentium III
performs better with 16-byte alignment.

 Speed Optimizations

For applications that utilize standard functions, such as memset, memcpy or
strlen, the -minline-all-stringops option can increase performance by inlining
string operations. This has the side effect of increasing the size of the image.

Loop unrolling occurs in the process of minimizing the number of loops by
doing more work per iteration. This process increases the size of the image, but
it also can increase its performance. This option can be enabled using the -
funroll-loops option. For cases in which it's difficult to understand the number
of loop iterations, a prerequisite for -funroll-loops, all loops can be unrolled
using the -funroll-all-loops optimization.

A useful option that has the disadvantage of making an image difficult to debug
is -momit-leaf-frame-pointer. This option keeps the frame pointer out of a
register, which means less setup and restore of this value. In addition, it makes
the register available for the code to use. The optimization -fomit-frame-pointer
also can be useful.

When operating at level -O3 or having -finline-functions specified, the size limit
of the functions that may be inlined can be specified through a special
parameter interface. The following command illustrates capping the size of the
functions to inline at 40 instructions:

gcc -o sort sort.c --param max-inline-insns=40

This can be useful to control the size by which an image is increased using -
finline-functions.

 Code Size Optimizations

The default stack alignment is 4, or 16 words. For space-constrained systems,
the default can be minimized to 8 bytes by using the option -mpreferred-stack-

boundary=2. When constants are defined, such as strings or floating-point
values, these independent values commonly occupy unique locations in
memory. Rather than allow each to be unique, identical constants can be
merged together to reduce the space that's required to hold them. This
particular optimization can be enabled with -fmerge-constants.

 Graphics Hardware Optimizations

Depending on the specified target architecture, certain other extensions are
enabled. These also can be enabled or disabled explicitly. Options such as -
mmmx and -m3dnow are enabled automatically for architectures that support
them.

 Other Possibilities

We've discussed many optimizations and compiler options that can increase
performance or decrease size. Let's now look at some fringe optimizations that
may provide a benefit to your application.

The -ffast-math optimization provides transformations likely to result in correct
code but it may not adhere strictly to the IEEE standard. Use it, but test
carefully.

When global common sub-expression elimination is enabled (-fgcse, level -O2
and above), two other options may be used to minimize load and store
motions. Optimizations -fgcse-lm and -fgcse-sm can migrate loads and stores
outside of loops to reduce the number of instructions executed within the loop,
therefore increasing the performance of the loop. Both -fgcse-lm (load-motion)
and -fgcse-sm (store-motion) should be specified together.

The -fforce-addr optimization forces the compiler to move addresses into
registers before performing any arithmetic on them. This is similar to the -
fforce-mem option, which is enabled automatically in optimization levels -O2, -
Os and -O3.

A final fringe optimization is -fsched-spec-load, which works with the -
fschedule-insns optimization, enabled at -O2 and above. This optimization
permits the speculative motion of some load instructions to minimize
execution stalls due to data dependencies.

 Testing for Improvements

Earlier we used the time command to identify how much time was spent in a
given command. This can be useful, but when we're profiling our application,
we need more insight into the image. The gprof utility provided by GNU and the

GCC compiler meets this need. Full coverage of gprof is outside the scope of
this article, but Listing 3 illustrates its use.

Listing 3. Simple Example of gprof

[mtj@camus]$ gcc -o sort sort.c -pg -O2 -march=pentium2
[mtj@camus]$./sort
[mtj@camus]$ gprof --no-graph -b ./sort gmon.out
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
100.00 0.79 0.79 1 790.00 790.00 bubbleSort
 0.00 0.79 0.00 1 0.00 0.00 init_list
[mtj@camus]$

The image is compiled with the -pg option to include profiling instructions in
the image. Upon execution of the image, a gmon.out file results that can be
used with the gprof utility to produce human-readable profiling data. In this use
of gprof, we specify the -b and --no-graph options. For brief output (excludes
the verbose field explanations), we specify -b. The --no-graph option disables
the emission of the function call-graph; it identifies which functions call which
others and the time spent on each.

Reading the example from Listing 3, we can see that bubbleSort was called
once and took 790ms. The init_list function also was called, but it took less than
10ms to complete (the resolution of the profile sampling), so its value was zero.

If we're more interested in changes in the size of the object than speed, we can
use the size command. For more specific information, we can use the objdump
utility. To see a list of the functions in our object, we can search for the .text
sections, as in:

objdump -x sort | grep .text

From this short list, we can identify the particular function we're interested in
understanding better.

 Examining Optimizations

The GCC optimizer is essentially a black box. Options and optimization flags are
specified, and the resulting code may or may not improve. When they do
improve, what exactly happened within the resulting code? This question can
be answered by looking at the resulting code.

To emit target instructions from the compiler, the -S option can be specified,
such as:

gcc -c -S test.c

which tells gcc to compile the source only (-c) but also to emit assembly code
for the source (-S). The resulting assembly output will be contained in the file
test.s.

The disadvantage of the previous approach is you see only assembly code, no
aspect of the size of the actual instructions is given. For this, we can use
objdump to emit both assembly and native instructions, like so:

gcc -c -g test.c
objdump -d test.o

For gcc, we specify compile with only -c, but we also want to include debug
information in the object (-g). Using objdump, we specify the -d option to
disassemble the instructions in the object. Finally, we can get assembly-
interspersed source listings with:

gcc -c -g -Wa,-ahl,-L test.c

This command uses the GNU assembler to emit the listing. The -Wa option is
used to pass the -ahl and -L options to the assembler to emit a listing to
standard-out that contains the high-level source and assembly. The -L option
retains the local symbols in the symbol table.

 Conclusion

All applications are different, so there's no magic configuration of optimization
and option switches that yield the best result. The simplest way to achieve good
performance is to rely on the -O2 optimization level; if you're not interested in
portability, specify the target architecture using -march=. For space-constrained
applications, the -Os optimization level should be considered first. If you're
interested in squeezing the most performance out of your application, your
best bet is to try out the different levels and then use the various utilities to
check the resulting code. Enabling and/or disabling certain optimizations also
may help exploit the optimizer to receive the best performance.

Resources for this article: www.linuxjournal.com/article/7971.

M. Tim Jones (mtj@mtjones.com) is a senior principal engineer with Emulex
Corp. in Longmont, Colorado. In addition to being an embedded firmware
engineer, Tim recently finished writing the book BSD Sockets Programming
from a Multilanguage Perspective. He has written kernels for communications
and research satellites and now develops embedded firmware for networking
products.

http://www.linuxjournal.com/article/7971
mailto:mtj@mtjones.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

At the Forge

Bloglines Web Services, Continued

Reuven M. Lerner

Issue #131, March 2005

Although some Web community sites get evil and lock in the users, Bloglines
takes an open approach and lets you point your own scripts at its Web services
API. Drop in and catch up with your favorite blogs.

I am writing this column a few days after the November 2, 2004, elections in the
United States. As an admitted political junkie, I enjoy the modern era of
computerized, always-on punditry. No longer must I switch TV stations or read
several newspapers at the local library; now, I can follow the sound bites as
they pass from the candidates to the press to the various partisan sites.

Keeping up with many different news and opinion sites can consume quite a bit
of time. As we have seen over the last few months, everyone has benefited
from the creation of news aggregators—programs that read the RSS and Atom
syndication feeds produced by Weblogs, newspapers and other frequently
updated sites. An aggregator, as its name suggests, takes these feeds and puts
them into a single, easily accessible listing.

Bloglines.com is an Internet startup that provides a Web-based news
aggregator. In and of itself, this should not surprise anyone; the combination of
syndication, aggregation and the Web made this a natural idea. And, Bloglines
isn't unique; there are other, perhaps lesser-known, Web-based news
aggregators.

One unique service that Bloglines offers its subscribers, however, is the ability
to use Bloglines' internal database to create their own news aggregators or
their own applications built from the data Bloglines has collected. This
information is available without charge, under a fairly unrestrictive license, to
any programmer interested in harvesting the results of Bloglines' engine. The
fact that Bloglines checks for updates on hundreds of thousands of blogs and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

sites approximately every hour means that someone using the Web services
API can be assured of getting the most recent Weblog content.

Last time [LJ, January 2005], we looked at the Notifier API, which provides
access to a particular user's available-but-unread feeds. We also discussed the
Blogroll API, which allows users to determine and use programmatically, if they
wish, a list of people who are pointing to a feed. As we saw, these APIs made it
easy for us to find out that new Weblog entries were available or to create our
own custom aggregation page listing Weblogs of interest.

Something was missing in the functionality that we exposed in that article,
however. It's nice to know that new Weblog entries are among my Bloglines
subscriptions, but it would be even nicer to know which blogs had been
updated. And, it's nice to get a list of my current subscriptions, but I would be
much happier to find out which of them have been updated—and to find out
when they were most recently updated, how many new entries are in each
Weblog and what those entries contain. In other words, I want to be able to
replace the current Bloglines interface with one of my own, displaying new
Weblog entries in a format that isn't dictated by the Bloglines.com Web site.

Luckily, the Web services developers at Bloglines have made it possible to do
exactly this by way of the sync API. This month, we continue our exploration of
Bloglines Web services, looking in detail at the sync API it provides. We also are
going to create a simple news aggregator of our own, providing some of the
same features as the Bloglines interface.

 Subscriptions and Items

At the end of the day, a news aggregator such as Bloglines simply is a list of
URLs. Indeed, the Python-based news aggregator we created two months ago
using the Universal Feed Parser was precisely such a program—it looked at a
set of URLs in a file and retrieved the most recent items associated with those
URLs. Each individual Weblog posting must be associated with one of the URLs
on a list. Removing a URL from the subscription lists makes its associated
postings irrelevant to that user and invisible to them.

The fact that Bloglines has multiple users rather than a single user means it
must keep track of not only a set of different URLs, but also which URL is
associated with each user. Although this obviously complicates things
somewhat, modern high-level languages make the difference between these
two data structures easily understood. Rather than simply storing a list of URLs,
we must create a hash table, in which the key is a user ID and the value is the
list associated with that particular user. Once we have the user's unique ID, we
easily can keep track of that particular user's subscriptions.

Of course, Bloglines is keeping track of subscriptions not for a few thousand
users, but for many tens or hundreds of thousands of users. Thus, it is safe to
assume they are not using such a naive implementation, which would suffice
for a small experiment or an aggregator designed for a small number of
people. Things get a bit trickier when you approach Bloglines' user load. Each
user's list of subscriptions can't be a simple URL; it is more likely to be an ID
number (or primary key, in database jargon) associated with a URL. Such a
system gives multiple participants the chance to subscribe to a site's
syndication feed and allows Bloglines to suggest new Weblogs that they might
enjoy, based on their current subscriptions.

It thus should come as no surprise to learn that retrieving new Weblog postings
from Bloglines is a two-step process, with the first step requiring us to retrieve
a list of subscriptions. That is, we first ask Bloglines for a list of subscription IDs
associated with a user. We then ask Bloglines to send us all of the new items for
this user and this subscription ID.

Implementations of the Bloglines Web services API are available in several
different languages. Because Perl is my default language for creating new
applications, I am going to use the WebService::Bloglines module that has been
uploaded to CPAN, the Comprehensive Perl Archive Network, a worldwide
collection of Web and FTP servers from which Perl and its modules can be
retrieved. For example, Listing 1 contains a simple program (bloglines-
listsubs.pl) that displays the title, subscription ID and URL for each of a user's
subscriptions. A number of additional values are available for each of the
subscriptions; the documentation for WebService::Bloglines, as well as the
Bloglines API documentation, lists these in detail.

Listing 1. Display a User's Subscriptions

#!/usr/bin/perl

use strict;
use diagnostics;
use warnings;

use WebService::Bloglines;

my $username = 'reuven@lerner.co.il';
my $password = 'MYPASS';

my $bloglines =
 WebService::Bloglines->new(username => $username,
 password => $password);

Do we want to mark them as read?
my $mark_unread = 0;

From what date do we want to download items?
(This should be in Unix "time"

my $subscriptions = $bloglines->listsubs();

if ($subscriptions)

{
 # list all feeds
 my @feeds = $subscriptions->feeds();

 # Get each feed's title and URL
 foreach my $feed (@feeds) {
 my $title = $feed->{title};
 my $url = $feed->{htmlUrl};
 my $subId = $feed->{BloglinesSubId};

 print "Subscribed to '$title', "
 . "subId '$subId' at '$url'\n";
 }
}
else
{
 print "No subscriptions.\n"
}

If you are interested in preserving the subscription hierarchy the Bloglines.com
interface gives users, you might want to examine the folders function, rather
than the feed function used in Listing 1. Although feed returns a flat list of
subscriptions, folders keeps things organized as they exist on the Bloglines site.

 Getting Items within a Subscription

Now that we know how to retrieve the subscription IDs associated with a
particular Bloglines user, we can retrieve individual items associated with a
particular subscription ID. For example, Listing 2 is a short program that
retrieves all of a user's subscriptions and then displays all of the newly updated
items for each. The output is in plain-text format, not in HTML, which means
the displayed link is not clickable. But, it would not be particularly difficult to
run such a program in a cron job and dump its output into an HTML file,
thereby giving an up-to-the-minute personalized list of feeds. Of course,
Bloglines provides such a service at no cost whenever you might want to check
its Web site. So, although such a program is an interesting use of the Bloglines
Web services, it doesn't have a compelling use outside of those services.

Listing 2. bloglines-getitems.pl

#!/usr/bin/perl

use strict;
use diagnostics;
use warnings;

use WebService::Bloglines;

my $username = 'reuven@lerner.co.il';
my $password = 'MYPASS';

my $bloglines =
 WebService::Bloglines->new(username => $username,
 password => $password);

Do we want to mark them as read?
my $mark_unread = 0;

From what date do we want to download items?

(This should be in Unix "time"

my $subscriptions = $bloglines->listsubs();

if ($subscriptions)
{
 # list all feeds
 my @feeds = $subscriptions->feeds();

 foreach my $feed (@feeds) {
 my $title = $feed->{title};
 my $url = $feed->{htmlUrl};
 my $subId = $feed->{BloglinesSubId};

 print "Subscribed to '$title', "
 . "subId '$subId' at '$url'\n";

 my $update;

 # Trap errors!
 eval {$update = $bloglines->getitems($subId);};

 # Keep track of errors, showing "no change"
 if ($@) {
 if ($@ =~ /^304 No Change/) {
 print "\t No change\n";
 }
 else {
 print "\t Error code '$@' "
 . "retrieving updates.\n";
 }
 }

 # No errors? Show some basics about the items.
 else
 {
 foreach my $item ($update->items)
 {
 my $title = $item->{title};
 my $creator = $item->{dc}->{creator};
 my $link = $item->{link};
 my $pubDate = $item->{pubDate};
 print "\t$title by $creator "
 . "on $pubDate ($link)\n";
 }
 }
 }
}
else
{
 print "No subscriptions.\n"
}

One of the clever things that Bloglines has done in its Web services definition is
to use HTTP return codes to indicate errors and unusual circumstances. For
example, the 200 (OK) response code indicates that new items may be read and
that getitems($subId) contains one or more such data structures. The 304
(unchanged) response code, which normally indicates a page of HTML has not
changed since it last was requested, here has a slightly different function; it
indicates that a particular subscriber already has seen all of the available items
for this subscription. Other response codes (401, 403 and 410) indicate
authentication errors and probably mean that the requesting user has made a
mistake in typing the Bloglines user name, password or both.

Unfortunately, Perl's handling of such response codes is less than optimal. In
order to handle them, we must invoke $bloglines->getitems() inside of
an eval block and check for a non-empty value of $@ immediately after the
eval. If $@ is empty, we can assume that we received a 200 (OK) HTTP response
code and there are new items to read. But if it contains a value, we then can
rewrite the output message, as we did in Listing 2 . If we fail to trap this method
call within an eval block, however, our program will die with a fatal runtime
error the first time we receive anything other than a 200 response code.

Finally, two optional parameters make the Bloglines functionality complete. The
first, known as n, is a simple true-or-false (1 or 0) value that tells Bloglines if it
should update the already-seen bit for the articles it is sending to you.
Normally, when a user is viewing Weblog postings with the Bloglines.com Web
interface, this is set to 1, meaning you do not see any already-seen articles a
second time. Perhaps because they knew the Web services API currently
supplements other news aggregation applications, Bloglines wisely changed the
default to 0 in this API.

The second optional parameter, known as d, tells Bloglines the first date from
which you would like to download a particular site's postings. The value is in
UNIX time format, meaning that you send the number of seconds since January
1, 1970. This number is readily available with the time function in most major
languages, and it allows you to indicate with great precision exactly how far
back you want to delve into a particular site's history, as stored by Bloglines.

 Conclusion

To be honest, I am an enthusiastic Bloglines user without being sure exactly
where the site and company are headed. I cannot imagine that it will continue
to be free of charge and of any advertising indefinitely, unless its investors are
highly charitable or extremely naive. I enjoy its fine interface, the fact that I
easily can access the Weblogs on which I have depended for political insight—
or screaming, depending on how you interpret such punditry—and its speedy,
robust functionality.

But as Amazon, eBay and Google have demonstrated over the last few years,
providing a Web services interface to your core data opens the door to many
new creative applications that a company's internal developers never think to
create. Bloglines is only beginning to expose its functionality with Web services,
and although it has taken only an initial and tentative step in this direction,
what I have seen appears to be promising. I look forward to seeing applications
that will be built on top of this API, as well as the additional APIs that Bloglines
and its competitors will offer in an attempt to make Bloglines the central site
for Weblogs, readers and developers alike.

Resources for this article: www.linuxjournal.com/article/7961.

Reuven M. Lerner, a longtime Web/database consultant and developer, now is
a graduate student in the Learning Sciences program at Northwestern
University. His Weblog is at altneuland.lerner.co.il, and you can reach him at
reuven@lerner.co.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7961
http://altneuland.lerner.co.il
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Kernel Korner

Analysis of the HTB Queuing Discipline

Yaron Benita

Issue #131, March 2005

Can Linux do Quality of Service in a way that both offers high throughput and
does not exceed the defined bandwidth? Here's a thorough test.

The Hierarchical Token Buckets (HTB) queuing discipline, part of the Linux set
of traffic control functions, is a mechanism that provides QoS capabilities and is
useful for fine-tuning TCP traffic flow. This article offers a brief overview of
queuing discipline components and describes the results of several preliminary
performance tests. Several configuration scenarios were set up within a Linux
environment, and an Ixia device was used to generate traffic. This testing
demonstrated that throughput accuracy can be manipulated and that the
bandwidth range is accurate within a 2Mbit/s range. The test results
demonstrated the performance and accuracy of the HTB queuing algorithms
and revealed methods for improving traffic management.

The traffic control mechanism comes into play after an IP packet is queued for
transmit on an output interface but before the packet actually is transmitted by
the driver. Figure 1 shows where traffic control decisions are made in relation
to packet transmission on the physical Ethernet and transport-layer protocols,
such as UDP and TCP.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f1.large.jpg

Figure 1. The kernel makes traffic control decisions after the packet is queued for transmit.

The traffic control kernel functionality, as implemented in Linux by Alexey
Kuznetsov, includes four main components: queuing disciplines, classes of
service, filters and policing.

Queuing disciplines are software mechanisms that define the algorithms used
for treating queued IP packets. Each network device is associated with a
queuing discipline, and a typical queuing discipline uses the FIFO algorithm to
control the queued packets. The packets are stored in the order received and
are queued as fast as the device associated with the queue can send them.
Linux currently supports various queuing disciplines and provides ways to add
new disciplines.

A detailed description of queuing algorithms can be found on the Internet at
“Iproute2+tc Notes” (see the on-line Resources). The HTB discipline uses the
TBF algorithm to control the packets queued for each defined class of service
associated with it. The TBF algorithm provides traffic policing and traffic-
shaping capabilities. A detailed description of the TBF algorithm can be found in
the Cisco IOS Quality of Service Solutions Configuration Guide (see “Policing and
Shaping Overview”).

A class of service defines policing rules, such as maximum bandwidth or
maximum burst, and it uses the queuing discipline to enforce those rules. A
queuing discipline and a class are tied together. Rules defined by a class must
be associated with a predefined queue. In most cases, every class owns one
queue discipline, but it also is possible for several classes to share the same
queue. In most cases when queuing packets, the policing components of a
specific class discard packets that exceed a certain rate (see “Policing and
Shaping Overview”).

https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f1.large.jpg

Filters define the rules used by the queuing discipline. The queuing discipline in
turn uses those rules to decide to which class it needs to assign incoming
packets. Every filter has an assigned priority. The filters are sorted in ascending
order, based on their priorities. When a queue discipline has a packet for
queuing, it tries to match the packet to one of the defined filters. The search for
a match is done using each filter in the list, starting with the one assigned the
highest priority. Each class or queuing discipline can have one or more filters
associated with it.

Policing components make sure that traffic does not exceed the defined
bandwidth. Policing decisions are made based on the filter and the class-
defined rules. Figure 2 shows the relationship among all the components in the
Linux traffic control mechanism.

Figure 2. Linux traffic control mechanisms include queuing disciplines, classes, filters and
policing.

 TC Tool and HTB Definitions

TC is a user-level program that creates queues, classes and filters and
associates them with an output interface (see “tc—Linux QoS control tool” in
Resources). The filters can be set up based on the routing table, u32 classifiers
and TOS classifiers. The program uses netlink sockets in order to communicate
with the kernel's networking system functions. Table 1 lists the three main
functions and their corresponding TC commands. See the HTB Linux Queuing
Discipline User Guide for details regarding TC command options.

Table 1. TC Tool Functions and Commands

TC Function Command

tc qdisc Create a queuing discipline.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f2.large.jpg

The HTB mechanism offers one way to control the use of the outbound
bandwidth on a given link. To use the HTB facility, it should be defined as the
class and the queuing discipline type. HTB shapes the traffic based on the TBF
algorithm, which does not depend on the underlying bandwidth. Only the root
queuing discipline should be defined as an HTB type; all the other class
instances use the FIFO queue (default). The queuing process always starts at
the root level and then, based on rules, decides which class should receive the
data. The tree of classes is traversed until a matched leaf class is found (see
“Hierarchical Token Bucket Theory”).

 Testing

In order to test the accuracy and performance of the HTB, we used the
following pieces of network equipment: one Ixia 400 traffic generator with a
10/100 Mbps Ethernet load module (LM100TX3) and one Pentium 4 PC (1GB
RAM, 70GB hard drive) running a 2.6.5 Linux kernel. Two testing models were
designed, one to test policing accuracy and one to test bandwidth sharing.

The first model (Figure 3) was used for testing the policing accuracy of a specific
defined class. Port 1 in the Ixia machine generated traffic sent to IP
192.168.10.200 from one or more streams. The Linux machine routed the
packets to interface eth0 (static route) and then sent them back to the Ixia
machine on Port 2. All of the traffic control attributes were defined on the eth0
interface. All of the analysis was completed based on traffic results captured on
Port 2 (the Ixia machine).

Figure 3. Test Model #1 Configuration

TC Function Command

tc filter Create a filter.

tc class Create a class.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f3.large.jpg

The second model (Figure 4) was used to test the way the bandwidth of two
streams from the same class is shared. In this case, another two Ixia ports for
transmitting data were used.

Figure 4. Test Model #2 Configuration

Port 1, Port 2 and Port 3 in the Ixia machine generated traffic sent to IP
192.168.10.200, each using one stream. The Linux machine routed those
packets to interface eth0 based on a static route and then sent them back to
the Ixia machine on Port 2. Traffic control attributes were defined on the eth0
interface. All analysis was done based on the traffic result captures on Port 2
(Ixia machine).

 Ixia Configuration and Limitations

In all of the tests, the sending ports transmitted continuous bursts of packets
on a specified bandwidth. The Ixia 10/100 Mbps Ethernet load module (model
LM100TX3) has four separate ports, and each port can send up to 100Mbit/s.
The Ixia load module provided support for generating multiple streams in one
port but with one limitation: it couldn't mix the streams together and served
only one stream at a time. This limitation exists because the scheduler works in
a round-robin fashion. It sends a burst of bytes from stream X, moves to the
next stream and then sends a burst of bytes from stream Y.

In order to generate a specific bandwidth from a stream, which is part of a
group of streams defined in one port, specific attributes of the Ixia machine's
configuration had to be fine-tuned. The attributes that required fine-tuning and
their definitions are as follows:

• Burst: the number of packets sent by each stream, before moving to serve
the next stream.

• Packet size: the size of a packet being sent by a stream.
• Total bandwidth: the total bandwidth used by all streams.

See Table 2 for Ixia configuration details.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f4.large.jpg

Table 2. Ixia Configuration

The goal was to determine the appropriate burst size that would achieve the
requested generated bandwidth for each stream. Because all three streams
used the same physical line, the way the data was sent on the line resembles
the illustration in Figure 5.

Figure 5. Data as sent on the line from the Ixia machine to the Linux system being tested.

The following equations define the relationship between the attributes:

Table 3 explains the variables used in the equation.

Table 3. Variables Used in the Attribute Relationship Equation

Stream Generated-Bandwidth Packet Size Burst Size

1 15Mbit/s 512B 150

2 10Mbit/s 512B 100

3 2Mbit/s 512B 20

Total 27Mbit/s – –

Attribute Definition

Tc
The sum of the times (in seconds) it takes to send bursts 1-i

(Tc1 + Tc2 + Tc3+...).

Bs-i The number of packets in a burst of stream i.

Ps-i The size of packet sent by stream i.

Tb The total bandwidth sent by all streams (bits/sec).

https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f5.large.jpg

Assuming that the packet size is the same for all streams, as in the example, the
remaining calculation is that of the burst size.

Because all the streams share the same bandwidth, the requested burst values
can be found by examining the ratios between the requested bandwidths,

using the equation Bs-i = Bn-i. This number could be unusually large, though, so
it can be divided until a reasonable value is obtained. In order to have different
packet sizes defined for each stream, the burst size values can be altered until
the required bandwidth is obtained for each stream. A spreadsheet program
simplifies the calculation of multiple bandwidths.

 Test Cases and Test Results

When defining the HTB configuration, the following options of the tc class
commands were used in order to achieve the required results:

• rate = the maximum bandwidth a class can use without borrowing from
other classes.

• ceiling = the maximum bandwidth that a class can use, which limits how
much bandwidth the class can borrow.

• burst = the amount of data that could be sent at the ceiling speed before
moving to serve the next class.

• cburst = the amount of data that could be sent at the wire speed before
moving to serve the next class.

Most of the traffic in the Internet world is generated by TCP, so packet sizes
representative of datagram sizes, such as 64 (TCP Ack), 512 (FTP) and 1,500,
were included for all test cases.

Testing Model 1

Figure 6. Test 1: One Stream In, One Stream Out

Table 4. Results for Testing Model 1

Attribute Definition

Nc The number of Tc bursts in one second.

Bn-i The requested bandwidth of stream i (bits/sec).

From the results in Table 4, the following statements can be made:

• The maximum bandwidth a Linux machine can forward (receive on one
interface and transmit on another interface) with continuous streams of
64-byte packets, is approximately 34Mbit/s.

• The burst/cburst values, which give the most average accuracy results, are
18k/18k.

• A linear relation exists between the burst value and the requested rate
value. This relationship becomes apparent across tests.

• The amount of bandwidth pushed on the output interface doesn't affect
the accuracy of the results.

Burst

(Bytes)

Cburst

(Bytes)

Packet-Size

(Bytes)

In-Bandwidth

(Mbit/s)

Out-Bandwidth

(Mbit/s)

Default Default 128 40 33.5

Default Default 64 40 22 (Linux halt)

Default Default 64 32 (Max) 29.2

15k 15k 64 32 (Max) 30

15k 15k 512 32 & 50 & 70 25.3

15k 15k 1,500 32 & 50 & 70 25.2

18k 18k 64 32 (Max) 29.2

18k 18k 512 32 & 50 & 70 30.26

18k 18k 1,500 32 & 50 & 70 29.29

https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f7.large.jpg

Figure 7. Graphic Analysis of Packet Size vs. Output Bandwidth

Figure 7 illustrates the relationship between packet size and output bandwidth
after testing various packet sizes. From the results in Table 4 and Figure 7, we
can conclude two things: throughput accuracy can be controlled by changing
the cburst/burst values and the accuracy bandwidth range size is 2Mbit/s when
using packets of sizes between 64 and 1,500 bytes. To verify that a linear
relationship exists between the burst/cbursts values and the rate bandwidth,
multiple burst and cburst values were tested. Table 5 shows the significant
portion of the sampled data from the test case.

Table 5. Relationship between Burst/Cburst and Rate Values

Burst

(Bytes)

Cburst

(Bytes)

Packet-

Size

(Bytes)

In-

Bandwidth

(Mbit/s)

Out-

Bandwidth

(Mbit/s)

Assigned-

Rate (Mbit/

s)

9k 9k 64 32 17.5 15

9k 9k 512 32 15.12 15

9k 9k 1,500 32 15.28 15

4.8k 4.8k 64 32 8.96 8

4.8k 4.8k 512 32 8.176 8

4.8k 4.8k 1,500 32 8 8

3k 3k 64 32 17.5 15

3k 3k 512 32 15.12 15

https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f7.large.jpg

18k/18k values were used as a starting point. The burst/cburst values were
obtained by using the formula cburst/burst (Kbytes) = 18/(30M/Assign rate).
From the results in Table 5, cburst/burst values can be defined dynamically for
the rate value, such as when assuming a linear relationship.

Figure 8. Test 2: Three Streams In, One Stream Out

Table 6. Test 2 Results

Table 6 shows an example of one level of inheritance. Class 2 and class 3 inherit
the rate limit specification from class 1 (30Mbit/sec). In this test, the rate ceiling
of the child classes is equal to the parent's rate limit, so class 2 and class 3 can
borrow up to 30Mbit/sec. The linear relation assumption was used to calculate
the cburst/burst values of all classes, based on their desired bandwidth.

Table 6 describes how the linear relationship works in the case of one level of
inheritance. In this test, the input stream transmits continuous traffic of
39Mbit/s, and the accumulated output bandwidth is 31.8Mbit/s.

Burst

(Bytes)

Cburst

(Bytes)

Packet-

Size

(Bytes)

In-

Bandwidth

(Mbit/s)

Out-

Bandwidth

(Mbit/s)

Assigned-

Rate (Mbit/

s)

3k 3k 1,500 32 15.28 15

Stream
Burst

(Bytes)

Cburst

(Bytes)

Packet-

Size

(Bytes)

In-

Bandwidth

(Mbit/s)

Out-

Bandwidth

(Mbit/s)

Class

1 17k 17k 64 15 12.7 3

2 17k 17k 512 20 17.1 3

3 1k 1k 512 4 2.01 2

Total 18k 18k – 39 31.8 –

https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f9.large.jpg

Figure 9. Test 3: Four Streams in, One Stream out

Table 7. Test 3 Results

Table 7 shows the case of two levels of inheritance. Class 2 and class 3 inherit
the rate limit specification from class 1 (30Mbit/s). Classes 4, 5 and 6 inherit the
rate limit of class 3 (28Mbit/s) and share it based on their own rate limit
specifications. In this test, the rate ceiling of the child classes is equal to the
parent's rate limit, so classes 4, 5 and 6 can borrow up to 28Mbit/s. The linear
relation assumption was used for calculating the cburst/burst values of all
classes, based on their desired bandwidth.

From the results of Table 7, it can be observed that the linear relationship
works in the case of two levels of inheritance. In this test the input port
transmits continuous traffic of 50Mbit/s, and the accumulated output
bandwidth is 32.05Mbit/s.

Stream
Burst

(Bytes)

Cburst

(Bytes)

Packet-

Size

(Bytes)

In-

Bandwidth

(Mbit/s)

Out-

Bandwidth

(Mbit/s)

Class

1 1k 1k 512 5 2.04 2

2 6k 6k 6 15 11.326 4

3 3k 3k 64 10 5.67 5

4 7.8k 7.8k 512 20 13.02 6

Total 18k 18k – 50 32.05 –

https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7562f9.large.jpg

 Testing Model 2

Figure 10. Test 1: Three streams In, one stream Out

Table 8. Test 1 Results

As shown in Table 8, the bandwidth is distributed evenly when several streams
are transmitting the same number of bytes and belong to the same class.
Another test, in which the input bandwidth in stream 1 was higher than that of
streams 2 and 3, showed that the output bandwidth of stream 1 also was
higher than streams 2 and 3. From these results, it can be concluded that if
more data is sent on a specific stream, the stream is able to forward more
packets than other streams within the same class.

 Conclusions

The test cases presented here demonstrate one way to evaluate HTB accuracy
and performance. Although continuous packet bursts at a specific rate don't
necessarily simulate real-world traffic, it does provide basic guidelines for
defining the HTB classes and their associated attributes.

The following statements summarize the test case results:

• The maximum bandwidth that a Linux machine can forward (receive on
one interface and transmit on another interface) with continuous streams
of 64-byte packets is approximately 34Mbit/s. This upper limit occurs
because every packet that the Ethernet driver receives or transmits

Stream
Burst

(Bytes)

Cburst

(Bytes)

Packet-

Size

(Bytes)

In-

Bandwidth

(Mbit/s)

Out-

Bandwidth

(Mbit/s)

Class

1 1k 1k 512 5 0.650 2

2 1k 1k 512 5 0.600 2

3 1k 1k 512 5 0.568 2

Total 18k 18k – 15 1.818 –

generates an interrupt. Interrupt handling occupies CPU time, and thus
prevents other processes in the system from operating properly.

• When setting the traffic rate to 30Mbit/s, the cburst/burst values, which
give the most average accuracy results, are 18k/18k.

• There is a linear relationship between the burst value and the requested
rate. The cburst/burst values of a 30Mbit/s rate can be used as a starting
point for calculating the burst values for other rates.

• It is possible to control the throughput accuracy by changing the cburst/
burst values. The accuracy bandwidth range size is approximately 2Mbit/s
for 64–1,500 byte packet sizes.

• Bandwidth is distributed evenly when several streams are transmitting
the same number of bytes and belong to the same class.

Resources for this article: www.linuxjournal.com/article/7970.

Yaron Benita is originally from Jerusalem, Israel, and currently lives in San
Francisco, California. He is the CMTS software manager at Prediwave. He works
mostly in the networking and embedded fields. He is married and has a lovely
six-month-old daughter. He can be reached at yaronb@prediwave.com or
ybenita@yahoo.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7970
mailto:yaronb@prediwave.com
mailto:ybenita@yahoo.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paranoid Penguin

Book Review: Islands in the Clickstream

Mick Bauer

Issue #131, March 2005

When questions about computer security turn into questions about society in
general, Richard Thieme takes on the hard problems.

Why do we hack? Of all the things a person can spend time on, why obsess over
the myriad details involved in getting a C program to compile cleanly, a network
application to communicate properly or a Web application to withstand SQL-
injection attacks? Why do these things matter?

Richard Thieme, hacker sage, journalist, business and government consultant,
humanist and former Episcopalian priest, has some ideas why, and he provides
336 pages worth of credible responses to this and many other important
questions in his unique book Islands in the Clickstream (Syngress Publishing,
2004).

This is the sort of book you may not realize you want or need until you know it
exists. That's true of a lot of things, many of them trivial (shrimp-flavored
crackers and brass collar-stays come to mind), but there's nothing trivial about
Islands in the Clickstream. Based on Thieme's on-line column of the same
name, Islands in the Clickstream is about “the impact of computer technology
on organizations, society, and one's own self.”

If you think that sounds like a big topic, you're right. This book is composed of
columns spanning the better part of a decade, and Richard still has a long way
to go before exhausting his chosen subject.

Actually, though, that's a little like saying “that chap Stephen Hawking is on a
roll; I hope he doesn't get bored.” Because the picture Richard Thieme is trying
to paint is that of the human condition itself, which nowadays happens to be
inextricably entwined with technology. Each new “Islands in the Clickstream”

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

essay he writes adds clarity here or expands onto fresh canvas there, but the
painting never can be completed, even if it were possible for one person to
paint the whole thing.

Disclosure: Mick Was Already a Fan

Because I'm all about full disclosure, and because I think saying so might make
me look cool anyhow, I need to tell you I go way back with Richard Thieme.
Before I became a network security enforcer, I was a musician, and when still in
music school, I had the privilege of serving as a paid singer for the Reverend
Richard Thieme at St. Paul's Episcopalian Church in Milwaukee, Wisconsin. Yes, I
was a professional choirboy. Think that's funny, punk?

Anyhow, one of the best parts of that job was hearing Richard's sermons. Each
Sunday, Reverend Thieme would deliver a deep, frequently quirky and always
mind-bending monologue on what it all means. This was seldom the expected
dose of “this is what the Bible tells us life means.” No, even back then, Richard
was addressing questions like “we're all connected spiritually, but technology
and the media also connect us, in ever more tangible ways; how does that
change the nature of our spiritual connectedness?” That's not a quote—I wish
my memory were that good—but it's the type of thing he'd talk about.

Well, imagine my surprise, almost a decade later, when I learned that one of my
fellow presenters at the Root Fest 2 hackers' convention was that very same
Richard Thieme. And, aside from the radical change in venue, he really hadn't
changed that much. He was still working on life's more subtle yet compelling
questions; the miner had merely switched mountains. I've been a big fan of his
columns and speeches ever since, and I am proud to be acquainted with him
personally.

Rather than simply being arranged chronologically, the essays in Islands in the
Clickstream are distributed across the following chapters:

1. Introduction: This Is the Way the Internet Works
2. Computer-Mediated Living: The Digital Filter
3. Doing Business Digitally
4. Hacking and the Passion for Knowledge
5. Digital Spirituality
6. Mostly True Predictions
7. The Psychology of Digital Life: Identity and Destiny
8. Political Implications
9. The Dark Side of the Moon and Beyond

10. Technology Gets Personal

This is as good a way to organize Thieme's essays as any. Following Richard's
suggestion, however, I've been reading them more or less at random. Although
certainly there are common themes and even common observations between
essays, there's no narrative per se demanding sequential reading, even within a
given chapter, let alone between chapters. A single essay, whether five pages in
length or one and one-half, is a completely self-contained Richard Thieme
reading experience.

In this respect, and I hope Richard doesn't clobber me for saying so, Islands in
the Clickstream is ideal bathroom reading.

So that's what the book is about and how it's organized. But what does it
contain?

As readers of my Paranoid Penguin column might predict, some of my favorite
bits are in Chapter 4, Hacking and the Passion for Knowledge. Here's a
wonderfully representative snippet from the essay “Knowledge, Obsession,
Daring” (December 26, 1998):

At a recent hacker con, I was struck—again—by the
fact that hacker culture is the space in which everyone
will live in the next century. Hacking is not about
breaking into locked rooms. Hacking is about mapping,
then exploring; or perhaps exploring, then mapping.
Hacking is a mandate from evolving technologies to
enter a play space characterized by limitless vistas.
Properly understood, hacking in its essence is a kind of
spiritual quest.

Hacking is not just hard work. It is playfulness at its
very best.

Personally, I find it extremely refreshing to read such a concise and insightful
redux of the hacker ethos. I get a very good feeling knowing that this sort of
insight is being preached not only to the choir, so to speak, but to audiences
that include business people, law enforcement officers and representatives of
the federal government. Now, more than ever, the world needs hackers to
continue exploring and creating, and it furthermore needs to know that that's
what hackers do.

Thieme's insight goes far beyond understanding hacker culture, however. He
also understands our day jobs, and better still, how they relate to larger societal
issues. Consider this passage from “Lest We Forget” (November 23, 2001):

Computer security is a good metaphor for societal
security because computer networks are holographic
images of societies, a piece of the whole that contains
the whole in symbolic form. Perimeter defense of
electronic networks, we have learned, only goes so far.
It's the nature of networks to subvert boundaries
because networks interpenetrate one another in
indeterminate ways. Nodes can belong to any of
several networks the way a subway station can be a
stop on any of several lines. One consequence of this
is that insiders cause the great majority of security
incidents, which is also a way of saying that “insiders”
and “outsiders” are difficult to distinguish in a
networked world. Through the use of keystroke
loggers, telephone recorders, and surveillance
cameras, “insiders” in electronic networks are
constantly watched. Now that the United States has
been attacked from the inside with its own
infrastructure, there is pressure to do the same on a
societal level.

I find it remarkable that Thieme sees not only subtle truths and non-instinctive
fine points (and if you think his point about “inside” vs. “outside” is totally
obvious, think about how rare it still is for people to take internal security very
seriously), he finds common threads between these truths and fine points, and
then relates them to larger truths. It's a little like having a friend who not only
finds your lost car keys, but also accurately describes correlations between
short-term memory loss and work-related stress, and ends up suggesting ways
in which the national rates of heart disease and career dissatisfaction might
both be lowered.

I don't mean to sound facetious (though, I am having a little fun here). My point
is that although Richard Thieme is fascinated by hackers, network security,
espionage, UFO encounters, intellectual property and many other geeky topics,
what he's really trying to figure out is how all that relates to the larger human
truths about who we are, why we do what we do and how our perceived and
constructed realities relate to “real” reality.

As I stated earlier, a book about the hacker ethos, reality constructs and
humankind's place in the universe may not be the first thing that comes to
mind when you think of computer books worth purchasing. But on the other
hand, that very well may be because it's never occurred to you that there was
such a book. Islands in the Clickstream is one, probably the only one, and it
may provide some crucial things you haven't been looking for but should have
been.

Islands in the Clickstream: Reflections on Life in a Virtual World by Richard

Thieme

Publisher: Syngress Publishing, Inc., 2004

Length: 336 pages

Price: $29.95 US, $34.95 CAN

ISBN: 1931836221

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security
consultant in Minneapolis, Minnesota. He's the author of Building Secure
Servers With Linux (O'Reilly & Associates, 2002).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux for Suits

Migration Stories

Doc Searls

Issue #131, March 2005

Telling Doc about your IT department's Linux plans means risking your job.
That's not stopping these two. What's the Big Secret that Management wants to
keep quiet?

Marc Andreessen says, “All the significant trends start with technologists.” If you
want to know about migration from Microsoft Windows to Linux, your best
stories aren't going to come from big vendors on either side, or even from
CIOs. They'll come from the technologists clearing paths to their own favorite
mousetraps.

Take Tyler and Dash, both from the IT department of a credit union in the Bay
area of California. Together they comprise two-fifths of the the full-time IT staff.
Both also are brave members of a rare breed: IT staffers whose bosses let them
talk to the press. For every IT staffer with the right to talk, there are 50 or more
whose jobs depend on staying mum. In fact, one IT guy I quoted on these pages
last year recently told me he came within a hair's breadth of being fired for
letting the world in on the Big Secret that his company was doing what
approximately every other member of the Fortune 500 was also doing with
Linux and open source.

I met Tyler and Dash at Apachecon in fall 2004, over breakfast with a bunch of
other technologists, all with stories to tell. The major thread was migration.
Because I'm always interested in stories about how Linux helps make smart
companies smarter, I pressed for more. To my surprise, they were glad to give
it.

About his work, Tyler said, “I'm a tech specialist. I do Perl, system
administration, desktop support, whatever it takes. I also work with outside
consultants on dirty work we don't want to do.” Dash described his job as

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

“developer”, adding “I work on our in-house document management server,
which is core infrastructure at a savings institution like ours.”

Dash brought the first Linux box—a public Web server—to the company.
“Windows DNS and DHCP servers went out the door. Now we run ISC BIND to
manage that infrastructure. Next step will be directory servers. We're looking at
all the LDAP directories, commercial and noncommercial.”

“Generally we're inclined to roll our own solutions”, Tyler added.

When asked what precipitated their migration, Tyler said:

We had a number of good reasons for moving off
Windows and other proprietary systems. We didn't
want to sign NDAs or pay for round after round of
licensing costs. We wanted open development and
deployment environments. We were looking for more
freedom and independence. So we made a
commitment to convert to Linux and open source
everywhere it made sense.

The big issue for us is compatibility everywhere. We
have Windows desktops. Mac desktops. What's
stopping us now are applications from vendors that
use things like Microsoft Access Engine. WINE doesn't
support that very well, yet. We're looking at Graphon.
That way we can run a Windows server with Graphon
loaded, serving applications out to a Linux terminal,
thin client style. Right now we're running full clients on
the teller stations. In the long run we'll have thin Linux
clients everywhere that's customer-facing. We'll have
the fat clients in the back office.

As with many other enterprises, “Microsoft Exchange is a big hang-up.” But,
unlike many other enterprises, these guys are eager to find alternatives. Two
candidates are Groupwise and Scalix, but they say they're “open to anything”.

When I asked for specifics about their server and client platforms, Tyler said,
“Our Linux servers run Gentoo. We like Debian but it's releasing too slow.
Gentoo is conservative, but it's current. Our personal machines are G5s running
OS X, because it's UNIX. We live in a bash shell.”

One surprising statement: “There's a knowledge gap in Windows. Management
is easier now, because everybody knows how to manage UNIX machines.”

A core issue from the start of Dash and Tyler's migration project has been
document management. They wanted to migrate off their proprietary
document management server, Dash said, “by whatever means”. The means
chosen were pure Do-It-Yourself IT (DIY-IT):

We have quite a range of docs to manage: plain-text
files. Scanned documents. Customer identification. We
used to run something on NT Server and SQL Server.
Not much flexibility there. We had to buy licenses and
the client was a pain in the butt to administer. We
were totally limited to what our reseller said we could
work with. Disaster recovery was very difficult,
especially from a cost point. You could spend the
equivalent of a hundred thousand dollars just trying to
fix the mess.

So we decided to start off small, with a few key
features in our set. We wanted an open, Web-based
app, and to operate in a browser. All HTML, almost no
JavaScript, XHTML 1-compliant, with CSS (Cascading
Style Sheets). As simple and cross-platform as
possible, with PHP and MySQL on the back end. We
started off with Linux and Mozilla as a test bed. Then
we tested with Windows, using Mozilla, then with Mac
and Safari. Then with Firefox on everything. The result
works pretty well.

At Apachecon, I also met with Jon Walker, cofounder and CTO of Versora
(versora.com), a small company from Santa Barbara, California. Versora went
into business about a year ago to meet what Jon called “the demand for
Windows-to-Linux migration”.

When I asked him what was driving that market, he said, “It's hard to beat zero
as a licensing cost, just for starters.” He's optimistic about the company's
prospects. “Given the economic appeal alone, we figure the market will be
huge.”

Versora currently offers two migration products. The first is ProgressionWeb,
for migrating from IIS to Apache. Among other things, it allows customers to
continue running ASP (Active Server Pages, or .asp) on Apache servers. The
second is ProgressionDB, announced at LinuxWorld in February 2004.
ProgressionDB helps customers migrate from Microsoft SQL Server to open-
source databases such as MySQL, PostgreSQL and Ingres.

In fact, Jon said Versora is hoping to win the Ingress Challenge, which will award
$1 million to “the members of the Open Source community that develop
applications to convert, transform and migrate data and applications from the
selected databases [Oracle, Microsoft SQL Server, et al.] to the Ingres
database”. (The contest closes in February 2005, with winners announced in
April 2005.) Jon, a 6' 9" former varsity college basketball player, is a competitive
guy with a quiet confidence about his company's abilities. I'm not sure I'd want
to bet against him.

On the other hand, I'd be willing to bet against any market for Linux-to-
Windows migration.

http://versora.com

Doc Searls is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

EOF

Data Center Linux at OSDL

Ibrahim Haddad

Issue #131, March 2005

If you want to get Linux into big enterprise customers' data centers, you need a
working group that speaks their language. Here's how OSDL is matching data
center needs to development work.

A lot is happening at the Open Source Development Labs (OSDL). The Carrier
Grade Linux initiative helps Linux gain new grounds in the telecom world, and
the Data Center Linux (DCL) initiative is working to accelerate the adoption of
Linux in enterprise data centers. The Desktop Linux initiative aims to accelerate
the adoption of Linux desktops. Plus a lot of activities, such as the higher
educational forum, kernel testing, the legal defense fund, Linux advocacy to the
world and much more are keeping OSDL busy. In this short article, I introduce
the Data Center Linux initiative and report on its goals and ongoing work.

The DCL community is made up of vendors, users and open-source developers
that interact and define a Linux road map for data centers. It's a place where
people's interests meet and create a collective will to help advance Linux in this
sector.

The goal is to accelerate Linux adoption in enterprise-class data centers. DCL
functions as a center of gravity for developers, users, vendors and the Open
Source community to work together toward a common goal: improve Linux
capabilities and feature requirements to accelerate the development and
adoption of Linux in the data center.

The working group has many responsibilities. It captures, discusses, publishes,
develops, validates and monitors Linux capabilities needed for its adoption in
enterprise data centers. The DCL Technical Capabilities v1.0 document is the
work of current OSDL members. As for technical contributions, for the hackers
among us, DCL has been working to identify existing open-source projects that

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

meet the requirements identified in the technical capabilities document and
contribute or initiate open-source projects to meet the identified needs.

The working group follows open working methods collaborating with industry
companies and end users to identify a list of the capabilities needed in Linux
and prioritize them, very similar to the goals of other OSDL working groups.
This list, then, is used as guidance for member companies and the Open Source
community to help them start or refocus development efforts centered around
data center capabilities to Linux.

The Technical Capabilities v1.0 document describes many capabilities
categories, such as scalability, RAS (reliability, availability and serviceability),
performance, manageability, clustering, standards, security and usability. Some
of these categories are common to other OSDL initiatives. For this reason,
OSDL has identified those common areas among its working groups and
created Special Interest Groups (SIGs) where these issues are discussed
independently of a specific initiative. Current SIGs include the Storage
Networking SIG, which covers direct-attached storage; the Security SIG covers
aspects of security; the Clustering SIG examines clustering capabilities; and the
Hot Plug SIG focuses on CPU, memory, I/O bus and node hot-plug capabilities.

Several recent contributions have been made available from the DCL working
group, for example, the work on hardening crash dump utilities that enable
first-time failure data capture and analysis. Another example is that of
persistent device naming, in particular persistent storage device naming. These
contributions are significant—especially when systems (or nodes) grow and
scale and interconnect in large networked environments, such capability
becomes essential.

Based on the goal of the DCL initiative, the success of DCL can be realized when
there is an increase in Linux deployment in the data center. At this point, the
work is going at full speed. Only time will tell what the future holds for DCL.

Participation is open to anyone who wants to contribute to the DCL initiative.
For more information, please visit www.osdl.org/lab_activities/
data_center_linux. You will find a lot of information in addition to various
documents that are available for download.

Ibrahim Haddad, contributing editor to LJ, is a Researcher at the Ericsson
Research & Innovation Department in Montréal, Canada.

Archive Index Issue Table of Contents

 Advanced search

http://www.osdl.org/lab_activities/data_center_linux
http://www.osdl.org/lab_activities/data_center_linux
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

 From the Editor: March 2005 - View Source

Don Marti

Issue #131, March 2005

LAMP is great, but the first Web development trick you learned is still one of the
most important.

This issue is going to give you a bunch of Web development knowledge. Please
use it to help understand the next site or Web application you build. Don't just
download a bunch of open-source Web code and mangle it. Clean, valid HTML
makes the difference between a Web application that works like an application
and one that works like a slow-loading Web site. Make your software do HTML
right, and you can do more with the Web.

When the Web was new, we all learned HTML, and it was good. Then the
browser wars, WYSIWYG HTML editors and the Internet boom came along.
When a Web designer gets squashed between short deadlines, pixel-for-pixel
“make it look like that” requirements and buggy inconsistent browsers, the
result is bloated pages full of invalid HTML that tricks broken browsers into
doing the right thing.

Meanwhile, on the development side, we learned the bad habit of treating
HTML like PostScript—something we don't write ourselves. We gave the
designers a template directory and faithfully threw their incomprehensible
HTML out to the users.

But now it's time to “View Source” again and care about HTML. The Mozilla
Project trashed the old Netscape 4 code and released standards-compliant
versions. Konqueror got good. Even the proprietary browser vendors got up to
speed with Cascading Style Sheets. All of a sudden, a Web application that was
used to spewing out tons of <td valign=“top” bgcolor=“#ffffaa”> could simply
apply a class to the element and let the stylesheet fill in the details. Life is good
again.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

At least, it would be, if we would just clean up our sites and Web-based
applications. One Linux site I just visited served up a page with a nice stylesheet
imported in the page head, then ruined it with a bunch of unnecessary spacer
images and tag attributes that override the CSS. Unfortunately, that's typical.

We can't blame the flaky browsers or the pixel-pushing designers anymore.
And, it's not like we don't know HTML—we just don't care about it enough. The
cause of awful Linux Web sites these days is steaming piles of code that we
download, install and don't understand—then clot up with garbage tags until
the site looks kind of like how we want. In order to make the Web work, you
must understand the software you deploy. If you can't figure out what template
or script is responsible for an element you want to change, rm -rf the
steaming pile and start over.

When you're testing a Web application locally, or on a fast network next door to
the server, it looks like it doesn't matter, and a lean, mean 12kB page seems as
fast as a bloated 32kB monster. When you demo the new Web app to
Management, all you get is “great job”. When the application goes live, that
changes. Even if it's “internal”, other employees will be using it over a VPN from
home or a café. Then it all falls apart.

You don't have to be an HTML guru, though you could do a lot worse than to
read Jeffrey Zeldman's Designing with Web Standards. But if you want to be a
Webmaster, you have to justify the “master” part by keeping site bloat under
control. Save the bytes and enjoy the issue.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Readers sound off.

 Captive Audience and CAD

Your magazine is my absolute favorite! Over the last few years (while in prison),
I have become a radical fanatic of the Linux/Open Source Movement, and since
I have a captive audience, I preach the virtues and advantages of open-source
apps and the power of the Linux OS to anyone that will listen. Needless to say, I
have had many spirited discussions concerning that other OS while in the
shower. Regardless, I'm sending out “Fresh Meat” to the streets with the Linux
message.

Seriously though, I just wanted to relay my profound respect to all the hackers
and followers out there whose genius and devotion has created and sustained
this computing revolution.

Finally, I am interested in Computer Aided Drafting and Design programs and
the formatting standards used by manufacturers. Thus, I am wondering if there
are any open-source CADD programs used by industry or projects in the works,
because I don't recall reading anything regarding this subject.

PS: Because I will be released very soon (3/2/05) and I want to get involved
(seriously involved) with the Linux/Open Source Movement, I hope to someday
meet and become friends with all of you at the Linux Journal.

—
Mark Allen Laliberte
(AKA Mr Linux)

Thanks for writing. There is a GPL program called QCad that looks promising.
We'll look for an article on open-source CAD for a future issue. When you get
out, check the Industry Events section of our Web site for conferences and
tradeshows where you can meet us in person. —Ed.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 What to Call the Users?

I would like to propose a temporary moratorium on the use of the terms Linux
and user-friendly in the same sentence. More and more users are adopting
Linux as their OS of choice because what they consider friendly is being
redefined. A friend might attempt to educate you, or expect you to raise your
level of awareness to realize the full potential of your friendship. But a friend
would never answer your phone without permission, give personal information
to strangers that come to your door or announce to the world where you hide
your spare key!

Therefore, I hereby petition the editors of this, my favorite publication, to
replace the term user-friendly with abuser-friendly where appropriate. As in: “A
major consideration of most home PC users when considering a REAL OS, such
as Linux or, on that rare occasion, some lesser alternative, is the level of
abuser-friendliness...”, or, “Many industry insiders are of the opinion that Linux
will never be what you might call an abuser-friendly OS.”

—
R. B.

 Open Up Old Articles, Please

I was quite surprised at being greeted with a subscription-only viewing of
articles printed in your highly esteemed magazine. Is there some way that you
can open up articles in kernel land only, which are a month or two old, for
general viewing, something similar to what Linux Magazine does?

—
anupam

 Bus Reading

I've been an LJ subscriber for three years or so, and sometimes I take a first
look at the magazine on the bus while going to work. Today, a funny thing
happened to me. A person came to ask if this is a Linux-dedicated journal and
where could he get it. Linux has little expression in Portugal and Linux-related
publications are hard to find, so I gave him the LJ subscription form that comes
with the magazine, hoping that one more person will learn the advantages of
using a open-source OS.

—
nb

 Starting Young on the Kernel Books

I thought you might get a kick out of my son Gus examining my IA64 Linux
Kernel book. He also enjoys chewing on it, though that does make it a bit more
difficult, and soggy, for me to use.

—
Dave Lloyd

 Pumpkin Project

Here is my family's Tux-O-Lantern from Halloween 2004. The Tux-O-Lantern
repelled bad spirits while attracting the attention of kids and Linux fans alike—
like there is much of a difference between kids and Linux fans!

https://secure2.linuxjournal.com/ljarchive/LJ/131/7956f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7956f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7956f1.large.jpg

—
Paul

 Luca's Birthday Issue

I know, I know, too much babies and Linux, but don't blame me, it's the best
day of my life. This is my recently born son, named Luca, with an issue of Linux
Journal, the day after he was born. He felt tired and decided to take a nap after
browsing all the LJ material.

https://secure2.linuxjournal.com/ljarchive/LJ/131/7956f3.large.jpg

—
Pablo

 Take-Anywhere Desktop?

The basic objective for me is a common desktop or desktop continuity; XFCE
calls it persistent desktop. I want the same desktop at home and work—and
there are plenty of options for solving this problem.

The most recent suggestion is a bootable mini-distro on a thumbdrive;
however, that means that the hardware has to be USB-bootable. And then
there are the discussions about the lifespan of the Flash thumbdrives.

—
Richard

https://secure2.linuxjournal.com/ljarchive/LJ/131/7956f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7956f3.large.jpg

If you carry a live CD for each hardware architecture you use plus a copy of
your home directory on a thumbdrive, you can work even on hardware that
won't boot from USB. —Ed.

 Geekcorps Needs Linux Radio Gurus

In the past, you've written good articles about Geekcorps' work
(www.linuxjournal.com/article/6017) and we thank you. Now, we're in the
enviable position of offering volunteering opportunities to Linux professionals
again, and we're wondering if you can help us spread the word.

Geekcorps (www.geekcorps.org) is looking for a few volunteers to travel to Mali,
West Africa to help teach Malian radio stations and community centers how to
work with audio tools and software on Linux-based systems, connect the
systems by Wi-Fi over several kilometers and maintain both the systems and
connections with great ingenuity and minimal expense. These volunteers are
needed immediately (January–February 2005) and would stay in Mali about four
months, teaching small groups in a hands-on setting. More volunteers will be
needed starting in March or April to continue the experience.

Fluent French and at least 3–5 years of professional experience with advanced
audio tools and/or Wi-Fi on Linux is a must. Radio broadcasting and/or Wi-Fi
antenna and mast construction experience preferred. Willingness to work with
people and innovate with minimal technical equipment in a developing country
also is a must. Airfare, lodging, a small living stipend and dedicated in-country
staff are provided.

—
Wayan Vota

 Missing Code?

I'd have to agree with an earlier Letter to the Editor, please put the code
samples back in the magazine. What if I'm on a plane and have no connection
to the Net? I'd gladly pay an extra $5 for my subscription.

—
Jeff Macdonald

We never took any code examples out. We merely consolidated big lists of URLs
into jump pages on our Web site. The code examples are still there, and we're
keeping it that way. Besides the examples that appear in print, we sometimes
put a whole application on the FTP site to save you some typing. —Ed.

http://www.linuxjournal.com/article/6017
http://www.geekcorps.org

 HP Laptop Support

I am surprised that HP will support a laptop with Linux. Every time I call in or
send an e-mail for support I am told that it is not supported on any HP laptops.

—
Henry Gleason

Try it now. We got Linux phone support for the HP nx5000 on our first call from
the second person we talked to. —Ed.

 Photo of the Month: Antarctic Dawn

We were prepping for dive operations near the Bismark/Gerlache Straits at
about 1:30 AM when my coworker Fred Stuart strolled out on deck carrying my
November copy of LJ. I told him “Fred, only you would walk out into a beautiful
Antarctic dawn reading Linux Journal.”

https://secure2.linuxjournal.com/ljarchive/LJ/131/7956f4.large.jpg

—
Brent Evers

—
Fred Stuart

https://secure2.linuxjournal.com/ljarchive/LJ/131/7956f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7956f4.large.jpg

Photo of the month gets you a one-year subscription or a one-year extension.
Photos to info@linuxjournal.com.

 Send Your What on a Postcard?

I was astounded when I saw what was on the cover of the Linux Journal that I
received today—a form to fill out to order the archive CD and a space to fill in
credit card info and it's all conveniently mailable on a POSTCARD????

Anyone dumb enough to fill out that info on a POSTCARD and send it in would, I
would think, barely have the capability to read and, unfortunately, some of
them would likely blame LJ if and when they found out how someone had
obtained their credit card number, expiration date and even their signature.

I would advise you to mention this oversight to the marketing department or
whoever is responsible for this. No offense to you or any other individuals
there, but it seems like an incredibly obvious oversight for no one to have
thought of this before it was sent.

—
Lisa

We left out the blanks for your root password and bike-lock combination. —Ed.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

• diff -u: What's New in Kernel Development
• Kingdom of Loathing:
• On the Web
• They Said It
• First look: Ubuntu
• Web Developer Extension:

diff -u: What's New in Kernel Development

Zack Brown

Issue #131, March 2005

The revision control wars have not cooled down, but they have gone fairly
quiet. For the most part, this is because BitKeeper works much better than any
free alternative, and feature requests from kernel folks are given top priority
for development. In November 2004, only twice did the possibility of an
alternative come up on the linux-kernel mailing list. The first time, Andrea

Arcangeli once again presented tla, also known as arch, and although it did
seem that various other developers also had been keeping an eye on that tool,
the consensus was that tla was not yet scalable enough for the kernel.

Later on, in a completely different discussion, the darcs revision control tool
came up. David Roundy, its maintainer, announced a darcs mirror of the kernel
repository. This is a holy grail among revision control systems, because even a
mirror of the kernel history is a very large and difficult hurdle. For now,
BitKeeper is still in the far lead.

It's always great to see documentation. Alexander Viro recently wrote a HOWTO
for cross-compilation. According to him, it's neither difficult nor time
consuming to compile a kernel on one architecture, for use on another, and he
typically tests all his changes for compile errors on builds for six different
architectures: i386, x86_64, sparc32, sparc64, alpha and ppc. Geert

Uytterhoeven had some patches to help extend this to the m68k architecture

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

as well, but this may be put off for a while, because currently the m68k
architecture is not so well supported by the official kernel sources. Several
hard-core problems confront the developers, for which no solutions have yet
been found.

The 2.6 kernel development model continues to undergo transformations and
clarifications under the Linus Torvalds/Andrew Morton maintainership duo. The
new Signed-off-by tag, for instance, develops new wrinkles over time. Linus
recently clarified that if patches are passed back and forth between developers,
it is better for developers to move their Signed-off-by tag to the top, rather than
have multiple copies reflecting each contribution they made. He also suggests
including a CC list within each changelog entry, although he says this is
unofficial, for informational purposes only, and has no technical protocol to
follow. We'll see how long that lasts.

Meanwhile, a whole bunch of developers is unhappy that, as Adrian Bunk has
said, “2.6 is currently more a development kernel than a stable kernel.” These
folks feel that a 2.7 development kernel should be forked off as soon as
possible, and 2.6 should be allowed to stabilize. Although development is
definitely more fun than maintenance, Alan Cox has made multiple offers to
take over 2.6 maintainership, and he is known for giving a lot of weight to
stability in his patches. His 2.6-ac patch series is currently the preferred source
tree of a significant number of kernel developers. So far, neither Linus nor
Andrew has shown any sign of handing 2.6 off to Alan or slowing down their
pace of development. If anything, 2.6 development speed is only increasing at
this time.

Meanwhile, Linus continues to refine his version numbering habits in response
to recent criticism. His current thinking is that, for the 2.6 series, all pre-releases
will be tagged rc, the latest being 2.6.10-rc3. This has the virtue of simplicity,
which also motivated his decision in the 2.5 time frame to drop the -pre and -rc
tags entirely and release full 2.5.x versions each time. Given the relaxation of
the stable/development alternation, we'll have to see whether the 2.5 standard
persists into 2.7. For the moment, the only point of clarity with regard to the
kernel development model is that there is no clarity. The Linux development
model is being explored, revised, carved up and mutilated—however it ends
up, it clearly will be different from what it was before.

The 2.4 kernel continues to struggle toward stability. Marcelo Tosatti has
revised his goals many times, ranging from total lock-down, to accepting certain
important new features while rejecting everything else, to having a more
relaxed acceptance policy in general. Ever since 2.6 came out, he has been
trying to put 2.4 into deep-freeze, but with no 2.7 anywhere on the horizon, it
becomes harder to reject features from 2.4. There are always folks who need

2.4's stability, with more up-to-date features; and so more and more features
are backported from 2.6, and these continue to try to find their way into the
official 2.4 source tree.

Recently, the Device Mapper subsystem was thoroughly rejected, as being too
invasive for inclusion in 2.4 under any circumstances, and iswraid, on the other
hand (with some bumps along the way), made it in under the wire. After 2.4.28,
Marcelo made another valiant attempt to batten down the hatches, although,
as he put it, “New drivers are okay, as long as they don't break existing setups
and if a substantial amount of users will benefit from it.” In particular, new
drivers should be reviewed by someone knowledgeable in a specific area, he
said.

Kingdom of Loathing: www.kingdomofloathing.com

Don Marti

Issue #131, March 2005

On-line games need bleeding-edge client-side software with 3-D graphics, an
enormous back-end server farm and stiff subscription charges, right?

More than 100,000 people beg to differ. For the LAMP issue, here's a surprise
hit on the on-line gaming scene, Kingdom of Loathing. The Kingdom is a Web-
based adventure game that combines the problem solving of classic text
adventures with the emergent economics and politics of Internet gaming and
stick-figure graphics. It's hosted on Linux.

Don't expect your standard sword-and-sorcery or space-war plot though. Start
off slaying cans of tomatoes and asparagus in the Haunted Pantry and work
your way up to beating down Orcish Frat Boys, hippie chefs and other
monsters. Sell your extra loot in the Flea Market or the Mall. There's even an
Internet radio station where you can win in-game prizes. It's free of charge, but
we highly recommend that you donate $10 to get a powerful magic item.

On the Web

Check out the Linux Journal Web site this month for follow-ups on articles from
this month's issue by two of our most popular regular contributors, Dave
Phillips and Mick Bauer.

• After you finish Dave Phillips' article on how to use Ardour to create your
own professional-grade digital audio files, read his follow-up article on our
Web site. “Further Notes on Recoding 'Talkin bout the Weather'” () offers

http://www.kingdomofloathing.com
https://secure2.linuxjournal.com/ljarchive/LJ/000/7957.html

more details about the process of creating the song Dave wrote for the
Ardour article. He shares his choice of equipment for the recording
process, plus the editors, sequencers and plugins he used to complete the
song. If you want to hear the for-now final result, go to Dave's Web site,
linux-sound.org/ardour-music.html.

• In this issue's Paranoid Penguin column, Mick Bauer reviews Islands in the
Clickstream: Reflections on Life in a Virtual World, a book by Richard
Thieme that explores some of the philosophical questions and issues that
have arisen as our daily lives become more and more entwined with
modern technology. Mick had the opportunity to interview Richard about
some of the themes in his book; the transcript of their conversation is
available here. They discuss language, video games and Richard's religious
background as a backdrop for considering some of the questions about
the intersection of humanity and technology.

They Said It

Selling me a different brand of washing machine will not instantly fix my
stupidity—even one with fewer buttons to press.

—Peter Galbavi (source: Tyler Hardison's .signature)

I think, fundamentally, open source does tend to be more stable software. It's
the right way to do things. I compare it to science vs. witchcraft. In science, the
whole system builds on people looking at other people's results and building
on top of them. In witchcraft, somebody had a small secret and guarded it—but
never allowed others to really understand it and build on it.

Traditional software is like witchcraft. In history, witchcraft just died out. The
same will happen in software. When problems get serious enough, you can't
have one person or one company guarding their secrets. You have to have
everybody share in knowledge.

—Linus Torvalds, in BusinessWeek, www.businessweek.com/technology/
content/aug2004/tc20040818_1593.htm

You don't build reliable bridges by refusing to let anyone see the plans.

—Alan Cox, www.itwales.com/999721.htm

http://linux-sound.org/ardour-music.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/7934.html
http://www.businessweek.com/technology/content/aug2004/tc20040818_1593.htm
http://www.businessweek.com/technology/content/aug2004/tc20040818_1593.htm
http://www.itwales.com/999721.htm

First look: Ubuntu www.ubuntulinux.org

Don Marti

Issue #131, March 2005

If the idea of an up-to-date GNOME desktop environment on top of an
administrator-friendly Debian base sounds good to you, then burn a Ubuntu
install CD and give it a try.

Ubuntu's main strong point is a thundering herd of well-informed, helpful early
adopters. As I write this in December 2004, the Linux Web sites and mailing lists
are buzzing with Ubuntu questions and answers.

In the current Warty Warthog release, hardware autodetection is a notch
behind the current champ, SuSE Linux Professional. Ubuntu didn't get the USB
Wacom tablet or set up both heads of the dual-head video card on one test
system. It did fine on a more generic PC.

Ubuntu won't try to wow you with a flashy install, so be patient through its text-
based, competent first impression. When the desktop comes up, you'll get no
surprise, just the same Mozilla Firefox/Novell Evolution/OpenOffice.org setup
that's become the desktop Linux standard. Fans of KDE applications, such as
the Konqueror file manager/Web browser and the k3b CD burner, will have to
do some extra tweaks, though.

The Synaptic package manager, from Debian, is easier to use than other
distributions' tools for updating software. You can get anybody started using
the standard GUI apps on Linux, but Ubuntu's thoughtful choices make it easier
to teach new users how to install new software.

The simplicity makes this a great distribution to carry around for lack-of-Linux
emergencies you may encounter at other people's homes and businesses.
When the local coffeehouse had a problem with spyware on a legacy OS
running on the computer for customers, I put Ubuntu on there and gave the
manager a quick tutorial. After the install, the one issue requiring a Web search
to resolve was setting up printing to a printer connected to a Microsoft
Windows machine.

Because you probably know what Firefox, Evolution and OpenOffice.org look
like by now, here's Anna Goldberg, age 5, learning TuxPaint.

http://www.ubuntulinux.org

Web Developer Extension: www.chrispederick.com/work/firefox/webdeveloper

Don Marti

Issue #131, March 2005

Mozilla Firefox supports easy-to-install extensions, and one of the most useful
is Chris Pederick's Web Developer Extension, which brings together many
Webmasters' ideas for viewing and testing a site's look and functionality. For
example, you can display all classes and IDs, as shown here, to make it easy to
work on your stylesheet without viewing source on the HTML. You also can
clear out cookies and HTTP authentication for your site to start a new session
easily or run the W3C validator on the current page. You even can sanity-check
tables with a temporary border without changing the HTML or the CSS.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.chrispederick.com/work/firefox/webdeveloper
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

BladeRunner Cluster-in-a-box, Outblaze-SME, Xandros Desktop and more.

BladeRunner Cluster-in-a-Box

Penguin Computing announced the BladeRunner Cluster-in-a-Box server
system, which integrates blade servers, Ethernet switches, storage subsystems,
management software and cluster OS software in a single 4U chassis. The
BladeRunner cluster comes installed with Scyld Beowulf, a distribution
designed for cluster management that provides a single point of installation,
login and administration. The single master node blade has dual 2.4GHz Xeon
LV processors, a 2GB PC2100 DDR RAM drive and a 60GB fixed 2.5" IDE drive.
The 11 slave blades also have dual Xeon LV processors and PC2100 DDR RAM
drives and are PXE boot-enabled diskless nodes. BladeRunner configurations
can be scaled by adding additional 4U chassis and connecting the integrated
Ethernet switches, up to a 42U rack with 240 processors.

Penguin Computing, 300 California Street, Suite 600, San Francisco, California
94104, 888-736-4846, www.penguincomputing.com.

 Outblaze-SME

Outblaze-SME is an e-mail platform designed for VARs targeting the small- to
medium-sized enterprise (SME) market. Outblaze-SME features administration
and collaboration tools that enable SMEs to purchase and allocate storage, as
well as administer e-mail, calendar and file-cabinet services through a Web
interface. Its collaboration tools allow employees to share calendars, contacts
and files, and SME administrators can self-manage user accounts, storage,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.penguincomputing.com

group lists and global address books. Outblaze-SME also includes POP3, IMAP4
and SMTP protocols for access to e-mail through the Web and mail clients.
Outblaze-SME also comes with Outblaze's Sentry antivirus and antispam
services.

Outblaze, 10 Marshall Street, Old Greenwich, Connecticut 06870, 203-286-1424,
www.outblaze.com.

Xandros Desktop 3

Version 3 of the Xandros Desktop OS now is available for desktop and laptop
systems. Version 3 is built on the 2.6.9 Linux kernel and includes a customized
version of KDE 3.3. New features in version 3 include drag-and-drop DVD
burning in Xandros File Manager, Xandros Personal Firewall, Intel Centrino and
wireless card support, automatic encryption for user files, secure access PPTP
VPNs, CrossOver Office 4.1 and automatic alerts to Xandros Networks updates.
Xandros Desktop Version 3 enables users to drag and drop files from
anywhere, including Windows network shares and FTP sites. Users also benefit
from automatic spam filtering and virus protection.

Xandros Corporation, 301 Moodie Drive, Suite 200, Ottawa, Ontario K2H 9C4,
Canada, 613-842-3494, www.xandros.com.

Kiwi T1x0

EmperorLinux announced a new workstation, the Kiwi T1x0, based on the Sony
VAIO, models T140, T150, T160 or T170. This three-pound laptop has a 1280 ×

http://www.outblaze.com
http://www.xandros.com
https://secure2.linuxjournal.com/ljarchive/LJ/131/7952f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7952f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7952f2.large.jpg

768 wide-aspect LCD (10.6"), which X runs in native mode. The Kiwi T150 has
been certified for Fedora, Red Hat Enterprise, Debian, Slackware and SuSE. The
Kiwis have 1.1GHz Pentium-M 733 CPUs with 2MB cache, 512–1,024MB of RAM,
40GB hard drives and CDRW-DVD or DVD-RW drives. The Kiwis also offer full
support for X at 1280 × 768, 24bpp, i855gm; internal 10/100 land-line Ethernet;
internal 802.11 a/b/g Wi-Fi Ethernet at 11–54Mbps; USB 2.0; IEEE 1394 FireWire;
CardBus cards; and ACPI Hibernate. All versions of the Kiwi come with the
EmperorLinux care package and one year of toll-free phone and e-mail tech
support.

EmperorLinux, Inc., 900 Circle 75 Parkway, Suite 1380, Atlanta, Georgia 30339,
770-612-1205, www.emperorlinux.com.

 DiskOnChip H1

M-Systems introduced a new line of DiskOnChip devices featuring up to 8GB of
storage capacity, designed for use in music and video handsets. The 4GB
DiskOnChip H1, the first product released, offers 90 nanometer process MLC
NAND Flash, x2 technology and M-Systems' TrueFFS Flash filesystem, making it
capable of managing MP3 and other multimedia files at high capacities in a
single chip. The DiskOnChip H series features a legacy NOR-compatible
interface, allowing it to be used with any mobile chipset. The H1 offers support
for major mobile operating systems, including Symbian OS, Windows Mobile,
Palm OS, Nucleus and Linux, and it is compatible with all major CPUs and
multimedia processors.

M-Systems, Inc., 555 North Mathilda Avenue, Suite 220, Sunnyvale, California
94085, 408-470-4440, m-systems.com.

Archive Index Issue Table of Contents

http://www.emperorlinux.com
http://m-systems.com
https://secure2.linuxjournal.com/ljarchive/LJ/131/7952f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7952f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/131/7952f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/131/toc131.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Departments
	Legacy Database Replacement with LAMP
	Richard

Hulse
	DIY-IT
	Hello BRAD
	BRAD Meets Open Source
	Meeting Expectations
	Overcoming Limitations
	The Query Compiler
	Extending BRAD
	Finding NZ Content and Duration Search
	The Future
	Conclusion

	Managing Projects with WebCollab
	Mike

Cohen
	System Requirements/Architecture
	Installation
	User/Groups
	Project/Task Creation
	Views and Navigation
	Security
	Final Thoughts

	A Database-Driven Web Application in 18 Lines of Code
	Paul

Barry
	Step 1: Install Linux (If Needed)
	Step 2: Prepare Your Apache/mod_perl Environment
	Step 3: Prepare MySQL
	Step 4: Install Maypole
	Step 5: Create a Database and Some Tables
	Step 6: Set Up Your Application
	Step 7: Write Your 18 Lines of Code
	Step 8: Give It a Go!

	Introducing Ardour
	Dave

Phillips
	What It Is, What It Isn't
	Hardware Requirements
	Software Requirements
	Major Features
	A Session with Ardour
	Synchronization
	Impressions
	The Future
	Acknowledgements

	Centralized Authorization Using a Directory Service, Part II
	Alf

Wachsmann
	NIS vs. LDAP
	Configuring the NIS Servers
	Master Server Configuration
	Slave Server Configuration
	Client Configuration
	Typical Usages
	NIS Group Map
	NIS Netgroups
	User Netgroups
	Conclusion

	Event-Driven Programming with Twisted and Python
	Ken

Kinder
	What Is Twisted?
	What Is Asynchronous Programming?
	Accepting Connections and Sending Responses
	The Proxy Server Example
	Handling Callbacks
	Handling Errors
	Twisted Classes and Event Handling
	Wrap-Up

	Motion: Your Eye in the Sky for Computer Room Surveillance
	Phil

Hollenback
	The Hardware
	The Software
	Building the Software
	Configuring Motion
	Starting Motion
	Tweaking Your Configuration
	Future Improvements
	Conclusion

	The Perl Debugger
	Daniel

Allen
	Avoiding Bugs with Warnings and Strict
	What's Wrong with Print Statements?
	Starting the Debugger
	Essential Debugger Commands
	Four More Debugger Commands
	Actions, Breakpoints and Watchpoints
	Customizing the Perl Debugger

	The Oddmuse Wiki Engine
	Brian

Tanaka
	What Is a Wiki?
	Oddmuse Features
	Installation
	Configuration
	Bringing the Wiki to Life

	LaTeX Equations and Graphics in PHP
	Titus

Barik
	Requirements
	Project Overview
	Usage
	Minimal Configuration Options
	wrap Method
	render_latex Method
	cleanup Method
	transform Method
	Equation Examples
	Plotting Examples
	Available Implementations
	Conclusion

	Optimization in GCC
	M. Tim

Jones
	Levels of Optimization
	Level 1 (-O1)
	Level 2 (-O2)
	Level 2.5 (-Os)
	Level 3 (-O3)
	Architecture Specification
	Math Unit Optimizations
	Alignment Optimizations
	Speed Optimizations
	Code Size Optimizations
	Graphics Hardware Optimizations
	Other Possibilities
	Testing for Improvements
	Examining Optimizations
	Conclusion

	At the Forge
	Bloglines Web Services, Continued
	Reuven
 M.
Lerner
	Subscriptions and Items
	Getting Items within a Subscription
	Conclusion

	Kernel Korner
	Analysis of the HTB Queuing Discipline
	Yaron

Benita
	TC Tool and HTB Definitions
	Testing
	Ixia Configuration and Limitations
	Test Cases and Test Results
	Testing Model 1
	Testing Model 2
	Conclusions

	Paranoid Penguin
	Book Review: Islands in the Clickstream
	Mick

Bauer

	Linux for Suits
	Migration Stories
	Doc

Searls

	EOF
	Data Center Linux at OSDL
	Ibrahim

Haddad

	From the Editor: March 2005 - View Source
	Don Marti

	Letters
	Captive Audience and CAD
	What to Call the Users?
	Open Up Old Articles, Please
	Bus Reading
	Starting Young on the Kernel Books
	Pumpkin Project
	Luca's Birthday Issue
	Take-Anywhere Desktop?
	Geekcorps Needs Linux Radio Gurus
	Missing Code?
	HP Laptop Support
	Photo of the Month: Antarctic Dawn
	Send Your What on a Postcard?

	UpFront
	diff -u: What's New in Kernel Development
	Zack Brown

	Kingdom of Loathing: www.kingdomofloathing.com
	Don Marti

	On the Web
	They Said It
	First look: Ubuntu www.ubuntulinux.org
	Don Marti

	Web Developer Extension: www.chrispederick.com/work/firefox/webdeveloper
	Don Marti

	New Products
	BladeRunner Cluster-in-a-Box
	Outblaze-SME
	Xandros Desktop 3
	Kiwi T1x0
	DiskOnChip H1

